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A Query Driven Computer Vision System: A
Paradigm for Hierarchical Control Strategies During the Recognition
Process of Three-Dimensioral Visually Perceived Objects

1. Introduction

In our proposal "Query Driven Computer Vision System: A Paradigm for
Hierarchical Control Strategies During the Recognition of Three-dimensional Visually
Perceived Objects®, written two years ago, we set out to build a system which is able to
interpret a natural language query and automatically generate a recognition strategy.
We listed as key [eatures of the proposed system:
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1. automatic generation of recognition strategies
2. natural language input and output

3. hardware implementation of hierarchical architecture for real time
processing, including real time stereo computation.

Since it was a proposal for four years, we shall first describe our accomplishments
during the last 18 months, and based on our experience and progress, outline what we
wish to do the next two years. This research is a part of a larger research effort
conducted in the GRASP (General Robotics and Active Sensory Perception) Laboratory,
which in turn is a part of the Center for Artificial Intelligence at the University of
Pennsylvania. The Center for Al is supported by two large five year graats: one coming
from NSF-CER (Computer Experimental Research), which goes from September 1983
through August 1988, and the other coming from the Army Research Office, which goes
from September 1984 through August 1089. The principal investigators on both of these
grants are Professor A.K. Joshi with R. Bajesy as Co-Pl, and a few other Computer
Science Professors making various contributions. All the equipment in the GRASP
laboratory, except for the IKONAS image display (which was purchased from this
Airforce Grant) has been purchased from these two large grants. Needless to say that
due to the Center for Al and its funding, the research proposed in this grant is well
backed in terms of facilities, (see aiso the section on Facilities) but we need the support
for people in order to carry out the work.

We emphasize the role of the active sensor in our research. By active sensor we
mean a camera(s) which can move and serve as a probe rather than just a static recorder
of the scene. This should not be confused with active sensors like sonar, radar,
structured light, and laser range finders, which actually transmit a signal into the
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environment and receive its echos. The human analogy for the active sensor paradigm is
‘a pilot in an airplane who can move his/her head and eyes in order to improve the
recovery of the 3D information by combining stereo with motion, improving the visibility
of some details by control of zoom and focus, and their like. The activity is not in
transmitting signals, but in positioning the sensor and optimizing its parameters for the
signals being received.

The second area we emphasize is the Natural Language (NL) query. This is the
reason why in this first phase we have concentrated more on the systems issues than on
the perfect solution to individual modules. We wanted to provide a pictorial system
(with depth map, surface descriptions, etc.) so that the Natural Language queries could
be executed. Due to the query the user is continuously interacting with the system and
the perceptual domain. The query represents the objects and their spatial relationships in
the scene which must be translated into those components that the perceptual module
can identify. This of course implies a study of modularity and specialization and yet
interaction between the purely perceptual entities, and the linguistic properties.

The last but not least component of this research is the aspect of real time
processing. Here we are interested in the analysis of established perceptual algorithms
that can be converted into parallel algbrithxm, and in the development: of high
performance computer architecture for their implementation.

All this research though basic is also very experimental. Because of the complexity
of the scenes, sensing apparatus, and the processing strategies, we are testing the system
with both real life photos as well as on a scene mock-up, or model. This latter capability
is provided by s controlled and verifiable experimental environment including
arrangements of known objects to form the investigated scene. For this purpose we use
two scale models: one of a general city scene (Figure 1) and another of the engineering
quadrangle of the University of Pennsylvania in Philadelphia (Figure 2). The latter is
scaled at 300:1 and the objects are quite detailed. The importance of the controlled scene
is that we can test the ®goodness® (including accuracy and precision) of our vision
operators by making actual messurements of the objects and comparing them to the

scale model. Furthermore, we can use these scenes as a testbed for comparative studies
of our vision operators/algorithms with similar operators from other laboratories. The
basic research issues that we have been concerned with all along in this program are as
follows.
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Figure 1-1: General City Scene

1.1. Computer Vision

1. On the low level image processing we are investigating the robustness and the
uncertainties of the low level visual operators, like the edge detectors, under
different illuminations, different orientation, focus and zoom of the cameras.

2. For the recovery of three-dimensional information we are interested in how to
combine redundant information and resolve conflicting data, such as what comes
from stereo and optical flow.

3. Rules for recognition strategies: Are there any principles? Can we separate the oty
rules based on the knowledge about the camera parameters, the illumination and
the semantics of the objects?

1.2. Natural Language !9

1. Since this is a query driven system, the user can employ NL words to specify the
spatial relations between the objects in the perceptual domain. One of the research

issues then is to develop a computational model which maps these linguistic terms -2 "
onto the perceptual model of the scene. This model must account for the meaning !

of the words which are related by the locative construct (i.e. spatial construct).

f—

2. Also due to the query the user is continuously interacting with the system and .. :::
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Figure 1-2: Engineering Quadrangle of the University of Peansylvania
in Philadelphia

perceptual domain. We intend that there will be some cooperative behaviour
between the system and the user. Here, however, we have extra degrees of
(reedom stemming from the active sensors, and their probing of the environment,
that adds to the dynamics of this particular system. Thus one of the fundamental
goals of this research is development of a computational model that
accommodates this kind of interaction.

. Last but not least, the development of NL interfaces to an active perceptual
module involves some key issues of knowledge representation, modularity, and
communication between the linguistic/conceptual and perceptual components of
the system.

1.3. Special Purpose Computer Architecture

1. We are investigating both hardware and software issues relating to the
implementation of ultra-high performance systems for the execution of low and
medium level image processing algorithms.

2. In terms of hardware, the Image Processing Optical Network or [PON is being
developed as a high performance MIMD system based on s non-blocking optical
interconnection network. A basic attribute of [PON will be the dynamically
partitionable and reconfigurable network based on optical-hybrid technology for
key components to provide high bandwidth communications, high capacity

Setntih A 650435 AU IRV S GOCH RN L |



M L KW SR Ve VY e v oW b L O Ao

buffering, and certain types of high speed processing.

3. User level programming of [PON will be accomplished using the concept of process
level dataflow control via an interactive graphical image processing language. Of
fundamental importance here is the design of optimal strategies for the static and
dynamic allocation of resources (processors, memory, communications links) and
real-time scheduling.

1.4. Outline
In the subsequent chapters we shall describe in more detail our results for the last
year and a half and our plans for new research. It will be divided into three parts:

e the computer vision investigation,
o the natural language problem, and

o the special purpose architecture developmeant.

2. Computer Vision . _
The computer vision section will be further subdivided into three sections:

o the low level image processing with active sensor
o the recovery of 3D information;

e and the surface reconstruction, representation and interpretatioan.

2.1. Low Level Image Processing with Active Sensors

Traditional approaches with static images use much low level image processing
which concentrates on filtering and edge detection. In the context of active sensing we
are seeking measurements from the current scene to feed back and coatrol the various
parameters of the active camera: size of the lens aperture, positioning of the head,
orientation and the viewing angle, zooming in on the area of interest and converging on
some points of interest with the vergence control of the stereo camera.

We have investigated several edge detectors and filters in the domains of both time
and space. In particular, we have experimented with a non-directional edge detector
very much like the Laplacian of Gaussian function, s directional edge detector using the
Gabor filter, another directional edge detector approximating the first derivative of
intensity [Canny84;David84] and features of the intensity functions, such as the first and
second derivatives, very much like Haralick's Topographic Primal Sketch

(Haralick83;Crowley].




It is very clear that different filters and features are suitable depending on the

scene, its illumination and the opening and closing of the camera aperture (iris). The
open issues are:

a) what is the feedback signal for the camera in terms of opening and closicg
the aperture with respect to the optimal contrast.

b) How should differently scaled filters and their corresponding edges be
combined in order to obtain the ®*best boundaries® of objects. Here we define
contours as 2D outlines that are obtained from edges, and the label boundary
denotes the true 3D boundaries of objects.

For this we propose the following study: a laboratory set-up with a fixed scene, for
example a mock-up of a fictitious city (see Figure 1) with a 10-channel illumination setup
which can be precisely computer controlled. What one wishes to measure is a function
of the magnitude of an edge with respect to changes of two parameters: first, the
illumination of the scene, the size of the aperture; second, the scale (bandwidth, stzndard
deviation) [Witkin83; Terzopolous82] of the filter which is used before the edge detector is
applied.

We hope to prove or disprove two hypotheses: one, that for every scene
(depending on the material of objects in the scene) and the illumination there is an
optimal degree of opening of the camera’s aperture; the other is that the scale on which
the edge is detected the *best® is proportional to the size of the object and to the detail
that the observer is interested in.

Other low level image processing consists of linear and non-linear filtering (see
Appendix 2).

2.2. Recovery of the 3D data

[n this section we wish to study how to recover the 3D information from a stereo
pair of images, a series of images taken in time, and controlling the vergence angle
between a stereo pair of cameras.

2.2.1. Stereo

The problem of stereo is traditionally divided into two parts: the correspondence
problem (which is the difficult one), and computing the true (in some absolute coordinate
system) depth value. We assume that the camera calibration problem has been solved,
including the problem of scan line registration [Izaguirre85|. First we shall deal with the




problem of correspondence and matching. The computation of the true depth value will
be treated when we discuss the use of the vergence angle.

The stereo matching problem: During the last year or so we have
experimented with a combined edge-region matcher (Appendix 1). Although the results
were encouraging, we wished to understand the inherent limitations of a stereo matcher
of static scenes. Hence, we embarked on the following problem: Given two 2-D
projected views of a 3-D scene which differ by an arbitrary but known transformation,
one needs to find unique matching between corresponding points. We assume that the
input data for both images is a series of edge maps recovered through different filters
and/or features.

There are two possible errors:

1. features in each image that should be matched but are not—~the true nezatives;
2. the features in each image that should not be matched but are matched—the false
positives.

Furthermore, from the total number of features not all have a match, due to
partial occlusions. So the total number of matchable features is less than the total
number of features in either image.

What are the parameters or features upon which matching may occur?

1. edge points

2. edge segments

3. two edges and their relationship (corners, intersection,..)
4. more then two edges

5. enclosed contours.

In other words, the feature vector can be ordered with respect to the number of
components.

The selection of the particular feature from the above list (and there could be
more) depends on two criteria:

e Uniqueness, i.e., we wish to have such a feature that uniquely finds its
corresponding match; and

¢ Robustness, i.e., we need such a festure which will not be sensitive to the
camera transformation.

From the uniqueness condition it would appear that the feature should be as rich
as possible (ideally the whole object). On the other hand, from the robustness condition




would follow the requirement for as small feature as possible. OQur task is to find the

optimum compromise between the two extreme criteria.

Adapting the methodology from the optimal control theory [Bryson, Ho89] we can
translate our problem as follows:

our decision parameters are: the number of feature points (denoted u’s)

the state parameters are: the complexity of features translated into
the length of the feature vector, (denoted x’s)

the constraint relations are two: robustness and uniqueness related to each
other by their reciprocity or complementarity.

Actually, the uniqueness function is equivalent to the complexity of features.

Hence the constraint relation can be reduced to one linear function
fixu)=x+mu-¢c=0,

where m, ¢ are coanstants.

The performance index, which is a scalar function of both decision and the state
parameters, is in our case the error of matching. In many physical systems and/or
problems the performance index function can be derived as an analytic {unction.
However, in our case this function has to be derived only empirically because it depends
on the complexity of the scene, which is impossible to model in its (ull generality. The
best we can say is that we hope that the function will be nonlinear with the existence of
minima so that one can derive an optimal control strategy. For obtaining the error
function we propose the following procedure:

1. We shall analyze several stereo pairs from different domains. Using first just
the edge maps, we shall perform matching and compute the total of error of
false positives and true negatives, normalized with respect to all the poiats
that should have been matched.

2. We display these values against the total number of edge points.

3. We compute larger features and perform matches on them aad display the
error as defined in 1. against the total number of features.

" 4. We repeat this process on larger and larger features.

5. From the obtained data we shall fit a function error (x,u) and then compute
the minimum value satisfying the constraint f{x,u)==0.

6. From the minimum we should obtain the optimal festure length u for a given
scene. This feedback signal also can be used for control if the pan/tilt of a
slightly different view of the scene is required.
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2.2.2. Optical Flow

The problem: Given a series of images and a particular feature in time, the
problem is to compute the vector (its magnitute and direction) of the feature spatially
displaced over time. The problem is similar to stereo computation in that the issue is to
find the proper features upon which one can match and then solve the coirespondence
problem. The problem is different from the stereo in that while in stereo there is an
angular disparity, in the time sequence when sampling rate is high the positional
disparity between the consécutive images is purely translational.

For the computing of optical flow we have investigated the following {eatures:

No features—the Horn and Schunk method; (Horn85]
Motion energy—Adelson’s method [Adelson84]
Burt’s correlation method [Heeg].

The advantage of the first two methods is that there is no need for solving the
correspondence problem. However, the price for that is high! In Horn and Schunk's
method the smoothness constraint is a terribly limiting factor. In Adelson’s method we
are getting only the motion energy and the movement direction left and right, no other.
This method uses filters sensitive to space/time oriented intensity changes This work is

. in progress and it still remains to be seen whether we will be able to use this method for

recovery of 3D from motion parallax.

2.2.3. Focus

Three-dimensional data can also be recovered from a scene using "depth from
focus®. We are building hardware to automatically control focus. We are developing
four different techniques for measuring focus sharpaoess, including (in increasing
computational complexity) scan-line sum-modulus-difference of intensity, grey-level

population entropy, grey-level variance, and power spectrum energy distribution analysis
(via radial histogramming).

These techniques will be implemented and compared with respect to their
effectiveness in improving focus to the exteat that one point in the visual field can be
said to be in focus, and from the position of that point on the image plane, the camera
focal length, and the diameter of the aperture, we can precisely and uniquely determine
the range of that point.
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2.2.4. Vergence Angle

The last method in the recovery of 3D information is the use of vergence angle.
This is a direct way of reading out the distance once the correspondence of the point has
been established. The method is essentially triangulation. We are building hardware to
both control and measure the vergence angle between two cameras. With this angle, the
exact distance to any point fixated in both visual fields can be discovered. Given this
exact distance, the relative depth maps returned from stereo and optical flow can now be
fixed as absolute depth maps. See Appendix 1 (*From Disparity to Depth®) for details
of how absolute depth maps are generated in the present implementation.

We propose to use this device (designed and under construction) for accurate and
unique absolute distance mapping of the visible surfaces and the stereo and the optical
flow for filling in the gaps, which return relative distances.

2.3. Surface Reconstruction and Representation
From the previous section it should be clear that no matter how hard we shall
work on various algorithms to obtain as perfect as possible 3D data, there is an inherent
limit, due to well known physical limitations (occlusion, illumination, {ccus, zoom,
~ orientation and the visible aspect of the object, to name a few) to the completeness with
* which 3D information can be recovered. So the next problem is how to supplement the
missing data. The obvious answer is that some kind of interpolation method needs to be

applied.

2.3.1. Depth Point Interpolation - Filling in the Gaps

The research issue for any scheme of filling the gaps is the trade-off between the
measurements and the a priori information. We elaborate on this trade-off with an
example. Let us suppose that we have a sparse array of 3D points after a stereo and/or
optical flow computation. Remember we are left with some points that have not been
matched either in the stereo matching nor in optical flow computation. In order to fill in
the gaps we have several possibilities:

a) we can ignore the unmatched points, i.e., have confidence only in those points
(measurements) that have been matched. Then assume, let us say, a linear (or
any polynomial) model (the a priori information about the local surface).
Based on this we perform linear (or polynomial) interpolation between the
neighboring points.

b) An alternative to the case a) is instead of assuming the linear or polynomial
models, which are inherently local, neighborhood models, assume a global

o) e ;
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0 smoothness constraint, which, using variational calculus, tries to fit the
h smallest and smoothest surface over the sparse data. [Grimson81|.
:':: ¢) The third possibility is to assume a local smoothness constraint in the depth
‘ values. Then reexamine the unmatched points (match them with the closest
W edgels in the other image) and check whether their depth value would satisfy
-_’.,:: the smoothness constraint with the neighboring points.
X\, d) Finally, il, for example, from the outline we can identify measured objects,
P then clearly the ®fill in gaps® process can use this information. An example
3 of this case can be sidewalks or roads in aerial views.
5
- As usual in machine perception, there is no one technique that works uniformly
> well in all cases. We believe that this is an integral part of the surface interpretation.
-' N One clearly needs all the above techniques available and then having a rule-based system
}. use whichever give the ®best® results. For example if we have one object in the view,
X then perhaps the third method is the ®best®. If one h2s reason to assume that one deals
O with objects that have only planar surfaces, then the first method might be adequate.
‘_i: The third method is the most versatile since it uses the most measurements and the least
-.‘ a priori information. The cost is in computation. We have implemented all of these,
and some partial results are shown in [Smitley84| (Appendix 1).
N 2.3.2. Reconstructing and Representing Surfaces

; Having a rich set of depth points available, the next problem is how to find closed
k 2 boundaries, and from them, surfaces.
; Finding boundaries of objects versus their surfaces are two complementary
* mechanisms which work simultaneously in a cooperative fashion. For the problem of
2' boundaries there are two problems that we wish to differentiate: one is to find the
n boundary of an object in a complex scene, that is to singulate (or segment) an object; the
2, other is to identify boundaries among surfaces in the same object. In the first case the
? :; problem is of a decomposition of the 3D visible space into individual objects, for

} example, by finding the smallest enclosing convex polyhedron. In the second case we are

concerned with finding enclosed curves or connected segments of lines that enclose a
y continuous surface.

s

_ While the problem of singulation of an object is the Ph.D. thesis of E. Krotkov (see
e his proposal), in this paper we shall report on the program for finding boundary lines,
::' also called wire frames. Naturally, we assume that all visible boundaries are true

p physical boundaries. The process starts with looking for points of high curvature and
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corners. From these points, a divide-and-conquer method of recursive decomposition
finds that line which has the lowest curvature and shortest path. Another method for
finding contours which instead of divide and conquer first generates all possible contours
and then uses graph search for finding the *best® contour in terms of some cost function
was investigated by Heeger [Heeger84]. This work, though interesting as a plausible
computational model for the psychophysical phenomenon of subjective conmtours, is
inefficient for practical implementation with current sequential hardware. For the future
we need to improve our corner {inder! (See Appendix 1 for a discussion of how edge
detection may also directly identify ®edgels® as corner features). After obtaining lines in
between the corners and/or high curvature points we still need to know which of these
contours are closed. The process that performs this task also creates a graph (a linked
list of vertices, edges, and faces) which serves as the basic data structure for further,
higher-level processing.

All the above procedures get leverage by virtue of the fact that our objects are
polyhedral. What remains an open research question is how to proceed when the
surfaces within boundaries are not planar. One method we shall investigate is converting
the set of 3D points into two images, one representing the surface normals and the other
the range information. Then by applying region growing and/or edge uetection
techniques one should be able to discriminate between planar and curved surfaces
[Dane82|. The curvature of curved surfaces can be represented using splines {Allen84).

Returning to our simplified world, once we have the planar faces, then we can
compute the surface attributes and relations. Here we are benefitting from the work of
our colleague Professor Badler and his students at the University of Pennsylvania, who
have developed a geometrical modeling system SurfsUP [Radack84]. In it, a face is
defined by its enclosing 3D contours. Attribute values for each face in the surface graph
are computed [Krotkov34|: compactness, centroid vector, (outward-pointing) normal
vector, area, *type® (building, sidewalk, field, street, and unknown), and number of
sides. These values are computed once and stored on an attribute list. Furthermore,
topological relations such as above, adjacent (touching), contiguous (sharing an edge),
contains (proper inclusion), looksadjacent, lookscontiguous (respectively adjacent and
contiguous under perspective transformations).  Relations (and indirectly their
complements) are computed once and stored as Boolean arrays. Results of this stage are
fed to the object interpreter.
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One of our major tasks is the development of a natural language (NL) query

system interface to a visual (perceptual) system. The reason for using NL is not because

‘
)
)
E
E 3. The Natural Language Issues

3 we want to comstruct a cute interface, but rather because the use of NL provides
*flexibility® to the user. There are many aspects of *flexibility® that make such faces
attractive for conventional databases or knowledge bases, and, of course, these will carry
over to the perceptual domain also. However, the particular aspects of *flexibility® that
are directly relevant to our domain are as follows. ’

The user can employ NL terms (words) to specify the spatial relations (and later
actions in the robotics domain) in the perceptual domain. It is in these terms the user
can best characterize the domain. The system then has the responsibility to map
successfully these terms on to the terms (or composites of them) to the perceptual
module of the system.

The semantics of spatial relational words (eg. spatial prepositions) is extremely
complex. Determining the proper interpretation of a spatial preposition is not merely a
matter of matching a preposition with a single representation. The interpretation of
spatial constructs depends heavily on the entities which are related by that construct
[Herskovits84] [Talmy83], For this reason, the system will have available to it the
linguistic properties of the objects which may appear in the domain as well as a set of
interpretations for the location of constructs based upon the semantic values of the
entities it relates. The linguistic properties are those features which affect the usage and
interpretation of a spatial construct (phrases describing the spatial relations between
objects). Since the domain is a visual one, each object in the domain will have a *place®
associated with it. This is what Herskovits calls the canonical geometric description of a
spatial entity (objects) [Herskovits84]. Ordinary solid objects (buildings, vehicles, people)
are bounded closed surfaces. Geographical objects are entities with slightly imprecise
boundaries - roads, rivers, and fields. Some other properties which must be represented
are a3 prototype shape and the sllowable deviations from it, the relative size, and
characteristic orientation - i.e. a table stands on its legs normally. The typical geometric
conceptualization will also affect the choice of spatial construct - is the object normally
viewed as a point or line. Along with the typical geometric conceptualization is the
typical physical context of an object. For instance, a door is normally viewed as begin in
a wall. The normal function of an object, its relative size, it functionally silent parts and

the actions commonly performed with an object will also be necessary for analyzing the
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spatial constructs.

For example, proper use of the preposition IN as in A is [N B involves not only
computing containment (or partial containment) of A in B, but also assuring that B is in
its normai orientation. Thus. in asking *Is the coin in the cup?*® the user is assuming
that the cup is in its normal orientation. If that is not the case and, say, the cup is
upside down and the coin is under it, a response by the system °®Yes® would be
misleading, as it will tend to confirm the user’s false presumption that the cup is in its
pormal orientation. An appropriate respoanse is at least *No®, but preferably (more
cooperatively), *No, it is under the cup, the cup is upside down®. Thus the system has
to be sensitive to the normal orientation of objects in order to fully capture the
semaatics of IN.

The kind of cooperative behavior described above has been studied extensively in
the context of NL interfaces to conventional databases or knowledgebases. Much of this
theory and technology for these domains can be successfully carries over to the
perceptual domain. However, NL spatial terms have not been systematically studied
from the point of view of developing interfaces for perceptual domains. A rather
preliminary study appears in [Herskovitz82]. However, this study is incomplete in may
ways, especially in terms of the development of a computational model without which it
is of no great value to our proposed task. Thus, one of our fundamental goals is the
development of an appropriate computational model for the kind of interactional we
want to support.

The second aspect of °flexibility® we call the query driven system. Given the
number of relevant spatial relations between objects in a perceptual domain, it is
impossible to precompute all the necessary relations. Our approach is ®query driven® in
the sense that, as a result of a query being asked, the system will compute the needed
information from perceptual database as necessary. This dynamic behavior is not
limited to just making some additional computations on already collected date, but will
also involve acquiring new data, for example, by taking an additional view from a

different angle (or getting new information from another modality), etc. The user is not
constrained by what information has been collected already and what predicates have
been precomputed. His queries will determine what information is needed to properly

answer the query, and if that information is not available, then it will so inform the
perceptual module. The perceptusl module can then determine whether this new
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information can be computed from the data already gathered or whether it will require
to get new data. Such behavior is initiated by the failure of the query at some level of
interpretation. Such an opportunity is rarely available in the coanventional databases,

and even when it is available, it is of a very limited kind, as in the case of updatable

databases.

If the reasoning processes fail to produce a positive response (the query fails to

have an answer although it is syntactically correct), two types of query failure analysis

are performed. The first type of query failure involves a query violating the global

knowledge known about the domain. In this case, the system will respond with a

message indicating that the query is conceptually ill-formed in this domain and why it is

ill-formed. For instance, if the query asked how many walls the street had. the system

would respond that streets do not have walls and that for that reason, the query is ill-

formed. The other type of failure involves not finding the information requested in the

scene model. In this case, rather than simply responding that the system was unable to
find the data in question, of the scene with the old one in order to obtain a positive

response to the query.

Thus the development of interfaces to an active perceptual module involves some
key theoretical issues of knowledge representation, modularity, and communication
between the linguistic/conceptual and perceptual components of the system.

3.1. The hypothesis generation and object recognition

The goal of the LandScan system is to perform query driven analysis for urban
scenes. This places two constraints on the object recognition process: it must have top-
down control structure, finding only those objects referenced in the query, and must
encode global knowledge about a domain in which objects of the same type may have
very different appearances. We have comsidered several different schemes [or the
representation of the global knowiedge necessary to perform object recogniation such as
frame based [Hwang83, Glicksman83], production systems, [Rosenthal81] and their like.
We have finally settled for Augmented Transition Network (ATN) formalism because it
enables the global knowledge to be encoded as a generative model for constructing
objects from the primitives in the scene while driving the recognition in a top-down
fashion [zwarico84].

The ATN formalism [Bates81], [Winograd83| was chosen to perform object
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recognition. Despite earlier failures using syntactic object recognition [fu82] we have
found that a higher level syntactic approach works well in the urban environment. It
appears that there are ®*rules® to describe the recognition of objects in the urban, aerial
domain. These objects appear to be composed of planes in fairly regular fashion even
though their appearances may be quite different. For example, while two buildings may
appear quite different, the relations between the planes which comprise each may be the
same. Earlier attempts at object recognition using a syntactic approach failed because
the primitives which were combined were too low level (edges, etc), the matching
sequences were too strict, and the domains were not appropriate for a syntactic
approach. In LandScan, the primitives used are higher level (surfaces) and thus have
more information associated with them. Unlike other syntactic pattern matching
systems, the grammar rules in LandScan do not specify a strict matching sequence.
Instead they specify the properties which must hold between the simpler components of
an object. Since the rules are more general there are fewer in the system thus
simplifying the recognition process. The grammar enables the global knowledge about
object appearances to be encoded as s generative model for objects of indefinite
appearances. This also differs from the Tropt and Walters ATN for 3-D object
recognition [Trop(83] first generates an hypothesis and then uses the ATN to verify the
hypothuis is correct. The ATN operita using a top-down coatrol structure - enabling
the object recognition to be a query-driven process. In LandScan the control structure
used in recognition has been separated from the global knowledge used in the recognition
process. Thus finding additional object types only involves adding syatactic rules for
recognizing these objects. It also implies that the control strategy used can be changed
as long as it can still use the grammar rules.

The Augmented Transition Network (ATN) is composed of three parts: the
grammar, a dictionary, and an interpreter. The grammar represents the a priori or
world knowledge that the system must have in order to recognize objects and assign
*cuitural® labels to subset of the scene. The dictionary presents the actual data which
will be used in the recognition process- the surface model described above. The third
component of the recognizer is the Lisp program which provides the control structure for
the process. An object is recognized by traversing s network successfully.

The grammar as written is a two level network (this is considerably simpler than
most ATN's which handle natural language utterances.) The bottom level concerns itseif
with the recognition of *simple objects.® An object is simple if its further decomposition
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into parts will result in no entity which is in the domain of objects. For example,
decomposing a building with a pitched roof will result in two halves of a pitched roof.
Neither of these entities are considered objects in the domain - they are parts of objects.
This level consists of the networks SIMPBUILD, SIMPSTREET, SIMPFIELD, and
SIMPSIDEWALK. The top level combines the simple objects which were recognized in the
first level of the network into ®*complex objects®. A complex object is decomposable in a
nontrivial way into at least one simple object. Each grammar rule represents the
components and relations which must hold between those components in order to be
considered an object or ®sub-object®. The components are specified by the arc type -
either an object primitive (surface) or a simpler instance of the object. The tests
associated with the arcs encode the relations which must hold between the components
as well as providing further checking for component features.

As objects are recognized, a dynamic model of the scene is incremeatally built by
adding more information to it as further image analysis occurs. The scene model in 3-D
MOSAIC [Herman83] is also incrementally derived as more data becomes available but
the modelling process is data driven. LandScan builds a model using a query driven
control. In other words, the modeller obtains more data as the user directs the vision
system to analyze other areas of the scene which are of interest to him/her. Thus the
Scene Model reflects the user's interest in the scene. The LandScan dynamic scene
model is especially useful because it is flexible. the accuracy of the scene model increases
as new dats is acquired. Thus old hypotheses can be discovered false, deleted, and the
scene model updated to reflect the more accurate understanding of the scene. In
LandScan, when the scene analysis of a new image begins the scene model is empty. As
questions are sasked, the scene analyzer/constructor searches for the entities whose
existence is in question using the object recognizer described above. As soon as the
objects queried are found they are added to the Scene Model. Thus the Scene Model
also reflects the history of the user's interest in the image. The dynamic scene model is
composed of two components: a list of objects currently known to be in the scene and s
set of matrices representing the p primitive relations hold between the objects on the
object list. This design facilitates updating the scene model. To update the model the
new object is simply added to the object list and the primitive relation matrices are
expanded to include the relationship of the new object to all other objects in the model.

The first compouent of the scene model is the object list. The elements on this list
are those objects which have been recognized during previous scene analysis operations.
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These objects are represented omly by polyhedral surfaces, conceptually the most
primitive component of an object. Thus to the high lcvel reasoner it appears that
objects are composed of 6n|y bounded planes - primitives at one level of representation.
The use of a single primitive at one level of representation. The use of a single primitive
(or a set of primitives which are not composed from one another) is conceptually elean to
work with and is adequate for modelling objects in this domain. Each instance of an
object in the scene has the information associated with it which was determined
necessary to facilitate further scene analysis. The components of an object record are a
name, the list of faces (polyhedral surfaces) comprising the object, its location in
Euclidean three space(average of the centroids of all the faces comprising the object),
and a subtype which gives more specific information about the expectations one can have
about the object.

The relations in the scene model represent the primitive relations or topological
properties between objects in the scene. The relations are ADJACENT, CONTIGUOUS,
LOOKSADJACENT, LOOKSCONTIGUOUS, ABOVE, and CONTAINS. They are defined over
the set of all objects currently recognized in the scene. These relations are defined
similarly to their counterparts in the Surface Model. The relations are represented by
their adjacency matrices because the adjacency matrix is easily updated and makes
composition of relations simple. The composition becomes a simple matter of boolean
matrix multiplication for which there are many fast and efficient algorithms.

The combined use of the Scene Model and the object recognizer [acilitates the
following scene analysis operations: determining the relations, both complex and simple,
among objects; locating and identifying specific objects and object parts. The existence
of objects will be resolved in one of two ways - [inding the object in the scene model by
searching the object list, or using the recognizer to find a new instance of the object. To
find an object part its face list will be searching until the part is found using the global
knowledge about parts embodied in the object model. As for resolving the interpretation
of locative constructs, the relations allow objects to be located relative to other objects in
the scene using the matrix operations specified by the sematics of the spatial constructs.
Suppose the question were asked, °Is there a car on the street?® An object of type CAR is

ON an object of type STREET if the following primitive relations hold:

CONTAINS(STREET,CAR)
ABOVE(CAR,STREET)

The reasoner would determine if the CAR is ON the STREET by calculating the
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following relation composition:

CONTAINS * AVOET
which would be calculated by a simple matrix multiplication of the CONTAINS
adjacency matrix and the transpose of the ABOVE adjacency matrix. So the
understanding of relational expressions will be accomplished by composing the primitive
relations.
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4. JPON - Advanced Architectural Framework for Image Processing
This section outlines the organization and implementation of [PON in terms of

both the hardware and programming environment, the progress to date, and our future

plans for this research effort. Additional details can be found in [Gold84] and [Smit84].

4.1. Introduction

One fundamental computational problem with image processing is the time needed
to execute typical algorithms. This is especially severe with the types of image
processing required for interactive image understanding applications. These algorithms
desl with extraordinarily large quantities of data. A typical two dimensional image (512
x 512) consists of approximately a quarter megabyte of data. Voxel (3D) and time
sequenced images consist of much greater amounts of data. Even the most powerful
contemporary processors become ineffective when presented with such quantities of data.
Many related applications such as a mobile robot trying to avoid obstacles as it moves
require real-time processing capability (one image every thirtieth of a second). The use
of ACTIVE SENSORs further increases this computational load since processing may
need to be performed quickly at several different levels of detail or on :lightly different
data.

The objective of the [PON (Image Processing Optical Network) project is to
investigate possible solutions to these problems. An architectural framework is evolving

from this effort which is usable on current computation systems and will be directly
applicable to emerging advanced technology as it becomes available in the future.

The realization of real time image processing has long been a goal of many
researchers in computer architecture. Towards this end many different architectures
have been developed. The applicability of MIMD, SIMD, pipelined and data flow
processors have been investigated [Etch83| and each found to have the following types of
problems:

1. Lack of flexibility (Pipelined and SIMD processors).

2. Complex awkward programming (MIMD).

3. Implementation Difficuities (MIMD and Data Flow).

4. Limited areas of efficient application (SIMD, Systolic array).

Image processing represents one of a class of computation applications which




requires the manipulation of extremely large datasets. Traditional computer architecture
including Von Neumann (SISD) machines as well as pipeline or systolic arrays, SIMD,
and MIMD networks falls far short of the performance required for the real-time needs of
machine perception, image analysis, certain types of image related computer graphics,
object tracking, etc. Inherent in these approaches are bottlenecks associated with
network communications and data storage.

4.2. Overview of [PON

The Image Processing Optical Network represents an architectural framework
consisting of two major parts: the [PON hardware configuration and optical
interconnection network and the integrated [PON software environment.

[PON is a computer system built around an optical interconnection network.
Optical interconnection networks such as the one which we are designing provide
solutions to many of the problems associated with the use of traditional electronic
networks. Communicating through this network are a number (< IOOOi of
heterogeneous processors which need not be 'silicon’ based.

The [PON programming environment facilitates the development and debugging of
parallel image processing algorithms. The hardware and the software of [PON have
been designed in such a way that programs written using the [PON program
development system can be efficiently executed on the [PON hardware as well as on
other multiprocessors or conventional superminicomputers.

It was essential to develop a system that is easy to program and debug while still
providing parallel execution for increased throughput. @ The I[PON hardware
configuration represents a machine on which actual image processing algorithms will be
implemented and used by vision and robotics researchers. Towards this end, [PON
embodies the following, which make it a powerful system for developing real time image
processing algorithms. [PON is a system of hardware built around an optical network
which is:

1. Completely connected
2. Non-blocking
3. High speed

4. Dynamically reconfigurable
5. Expandable at a linear cost
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W
¢ Allow for maximum utilization of any number of ultra-high performance
) heterogeneous processors which can be easily integrated into the IPON
‘: system.
" e Reduce the concern over the time taken to transmit data from one processor

N to another. This can reduce the difficulty of task scheduling since the

- transmission of data is not as costly as it is in traditional MIMD systems.
'l
:: o Allow for the use of distributed control flow as opposed to a centralized token
] matcher or task dispatcher.
)
A - o Make [IPON expandable. The network complexity increases linearly with the

number of processors, not at the rate of n-squared. Algorithms written for a
b given machine configuration do not need to be rewritten when the machine is
- expanded.

[PON'’s programming environment is based on process level data flow

0 which:

n ¢ Gives rise to mcdular programs which can be used as building blocks for

\ more advanced algorithms.

. ¢ Reduces any possible communrication bottleneck due to the fact that data is
only transmitted at the completion of a process as opposed to the completion
of an instruction.

M ¢ Allows one to exploit inherent parallelism amongst processes.

- .

ﬁ e The data flow execution paradigm is enforced only upon the processes

" themselves. Internally, the process can use any other appropriate flow of

) control paradigm to efficiently execute the algorithm.

. ¢ [PON is programmed in a graphical, hierarchical programming language

’ which eases the development problem associated with parallel algorithms.

Y

-s

* The optical network, which allows any processor to communicate with any other

. processor and allows any number of such conversations to take place simultaneously, is

. diagrammed in (Figure 3). The network consists of a optical transmitters (laser diodes),

I

v o acousto-optic deflectors (AOD, Bragg cells) and n photo sensitive receivers

(photodiodes). Each processor is attached to one or more transmitters and receivers.
The AOD devices serve as beam steerers; they deflect an incoming laser beam at an
5 angle proportional to the frequency applied to the device. For applications where high
. speed dynamic reconfigurability is not required, low cost mirror based deflection systems
based on galvonometers, servomotors, or piezoelectric devices can be used. Connected to
this network are a number of homogeneous processors. These processors need not be
typical digital processors; indeed one of the motivations behind the development of
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Figure 4-1: Optical Network

[PON was to allow integration of non-traditional image processing devices into a more
traditional (in terms of programming and use) image processing system. The reason for
this is the fact that digital computers are not always the ideal devices for doing image
processing. Alternative image processing devices include coherent and non-coherent
optical devices [Star82] that enable the computation of complex functions such as the
Fourier transform to proceed at the speed of light. Hybrid analog-digital systems
[Dood79| have also been developed that perform many image processing functions
which, if performed using purely digital techniques, would require orders of magnitude
more hardware to produce the same result in the same amount of time. More traditional
machines capable of increased throughput, such as SIMD computers, can also be
integrated into the [PON system. While many of these approaches are at the present
time extremely primitive, the important point is that they can be easily integrated into
[PON as the technology matures.

[PON programs will be written in a graphical data flow language. The language is
also hierarchical, allowing the programmer to view a program at any level of detail he
desires. We are choosing to use a graphical language in the hopes that a graphical
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representation of an algorithm consisting of a number of cooperating parallel processes

will be easier to understand, hence easier to construct and debug. It is interesting to
note that in most texts describing parallel systems, the system is first represented
graphically and then it is shown how to convert this graph to a one dimensional
representation, i.e., a program written in a language that supports parallel flow of
control operators such as fork and join [Denn76]. While this program retains the same
semantics of the original graph, it is no longer as easy to visualize just what function it
performs. We feel that it is this /inearizing of parallel programs, which makes writing
and understanding such programs the difficult task that it is today. [PON attempts to
reduce this difficulty.

4.3. Current Status of [IPON

Substantial progress has been made in the time (approximately one year) since the
[PON project was initiated. Some of the accomplishments of the first phases of the PON
effort are listed below:

e Architectural design of [PON.

¢ Functional emulation of [PON structure.

¢ Preliminary graphical programming interface.

o [nitial investigation of optical network implementation.
e Determination of requirements for distributed control.

e Organization of optical data link interface processor.

Note that most of these areas of research are quite general in nature. Thus,
although our immediate objectives relate to [PON, the results obtained with these
investigations will be applicable to other multiprocessor and dataflow systems - especially
in the areas of optimal resource allocation and scheduling on MIMD and dataflow
systems.

We are now in a position to investigate the following aspects of [PON:
¢ Implementation of prototype optical network.

e Optimal network control and task allocation.
o Use of shared high capacity storage.

e Performance evaluation and optimization.
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e Graphical programming system development.
¢ Hierarchical image database management.

e Integration of special purpose or hybrid processors into [PON.

To date the majority of work has been concentrated in the development of an
[PON system emulator. Towards this end a program to construct graphical programs,
compile them into an intermediate language and subsequently compile this language bas
been developed. Furthermore, a primitive version of the task allocator and an
interpreter to execute the generated code have also been developed. With these tools, we
have developed image processing algorithms in the grapbical language and executed
them under the [PON emulator on a single processor VAX. However, the emulator
currently only supports algorithms which require no iteration or selection and assumes
that there exist enough processors to perform all the tasks simultaneously.

Current work is centered around the development and analysis of the optical
petwork. We are constructing a small prototype of the hardware and plan to evaluate
the resultant network in terms of speed, reliability, and cost. Furthermore, we are
developing the necessary control algorithms through which the processors will interface
to the network. After the actual pérformance parameters of the network are obtained
through experiments with the prototype we will run simulations to determine what the
actual system throughput would be if a full scale network connecting heterogeneous
processors were available.

The simulator will also allow us to investigate various network control and task
allocation strategies and determine their effect on overall performance. Once the
optimum strategies have been determined we plan to implement them on a network of
VAXes and measure the real world performance of such a system. This network of
VAXes will initially be connected through the use of a high speed Ethernet, but as
development proceeds on the hardware for the optical network the Ethernet will be
phased out.

One of [PON's features is the use of heterogeneous processors, each tailored for
efficient execution of certain image processing tasks. These processors are
interconnected in such a manner that if a portion of a given image processing algorithm

can be executed in an extremely efficient manner on a certain processor, then an attempt
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should be made to execute that task on that processor. Several problems arise when
attempting to perform this sort of optimization. One problem is that ol measuring what
the performance of a processor is when presented with a specific task. The performance
of a processor depends on many factors and what is needed is a3 way of expressing these
factors in such a fashion that a task allocator can rapidly determine how well a processor
can perform a given task. Another problem concerns the task allocator itself. Even if a
processor's performance can be ascertained, the task allocation problem remains a NP-
complete problem and heuristics must be used to reduce the time taken to determine
task to processor allocation. An algorithm to perform such allocation has been
developed but experiments need to be performed to determine its effectiveness.

Development of [PON’s programming system is proceeding concurrently with the
development of the hardware. The graphical programming language is being expanded
to provide a complete set of programming language constructs. The expanded language
will allow for the expression of highly parallel image processing algorithms in 2 manner
comprehensible to the programmer. In addition to expanding the languuge, work is
needed in the area of the user interface. This includes determining the most effective
manner of interactively manipulating graphical symbols and presenting these symbols in
a form which is understandable to the programmer.

To be a usable tool for image processing research, [PON must be able to rapidly
access large amounts of data from secondary storage. [PON is designed to operate at
real time rates (1 frame every thirtieth of a second). At these speeds, traditional
magnetic storage devices form a severe bottleneck. Furthermore, their data storage
capacity is somewhat limited. To overcome these problems we are investigating
alternative storage technologies such as optical disks. One limitation of optical disks is
their write once characteristicc. We hope to overcome this problem by using fast
temporary bulk store memory as a write buffer. Any temporary changes made to an
image will be stored in this memory. Only when the final result has been calculated will
the image be written to the optical medium. The software to control such a scheme and
simulations demonstrating the resultant increase in performance will be developed.

Hierarchical access to multi-spectral image data at variable resolution, size and
resolution is a characteristic of many complex image processing algorithms. [IPON will
support such access through the use of generic image processing tasks. A generic task
will be able to ptocess any size or resolution image. To accomplish this, image access
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will be provided in terms of an arbitrary number of rectangular sub-images or segments
which may be configured with respect to one another without altering the actual image
data. Images can then be treated as a list of Segment Descriptor Blocks (SDBs) through
which image processing tasks access the actual data. Using SDBs, a given image
processing task can be written in such a way that it can process a large variety of image
formats without need for modification. Research into the question of how to efficiently
interpret the SDBs in the [PON envirooment is to be conducted.

4.4. Conclusions

[PON is meant to be both a tool to design image processing algorithms and a
system which can execute these algorithms in real time. We are taking the approach
that there exist machines that offer efficient solutions to certain image processing tasks
and what is needed is a way to easily and coherently integrate these machines so that
they can work together to efficiently execute complex image processing algorithms.
Another function of [PON is to demoanstrate that digital electronics is not the only way
to implement image processing algorithms. The system is to allow experimentation with
hybrid digital, analog and optical image processing techniques to determine the
advantages and disadvantages associated with such an approach. It is through the use of
an ideal network, that a system providing the desired capabilities of [PON is possible.

Initial results, both in the design of the software and the design of the network,
encourage us to believe that [PON is a viable concept. With further work, [PON will
become a flexible, programmer friendly and ultra-high performance image processing
system. Such a system has the potential to advance research in fields such as robotics,
where the need for an easy to use real time image processing system is large.

Development of the concepts for [PON are nearing completion. Implementation
and evaluation remain.
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9. List of Publications Directly Related to This Project:

Surface Description From
Vision and Touch

Peter Allen

Precented at the Ist

Int. [EEE Conf. on Robotics
Atlantic, March, 84'.

Object Recognition Using
Vision and Touch :
Peter Allen

Ruzena Bajesy

Submitted to [JCAI, 85°.

Sensing Strategies

Ruzena Bajesy

Peter Allen

Presented in the 2nd ISRR,
Tokyo, Japan, August, 34’

Stereo Processing of
Aerial [mages

Ruzena Bajcsy

David L. Smitley
Proceedings of the Tth
Int. Pattern Design Conf.,
Montrial, August, 84'.

Final Report: The Design and
Construction of a Four Degree
of Freedom Camera Controller
John F. Summers

Internal Paper

Sphere Packing Algorithm
For Sparse 3-D Points
Ruzena Bajcsy

Franc Solina

Internal Paper

Computational Models of
Visual Hyperacuity

Eric Paul Krotkov
Submitted to the

Journal of CUBIP

Grasp Lab Memo:
Construction of a Three
Dimensional Surface Model
Erie Krotkov

Internal Paper

N e e

An Architecture for the Real-Time
Display and Manipulation of
Three-Dimensional Objects
Samuel Goldwasser

R.A. Reynolds

Internal Paper

A Generalized Object Display
Processor Architecture
Samuel Goldwasser

Internal Paper

GRASP:NEWS

Quarterly Progress Report
The GRASP!lab:

General Robotics and
Active Sensory Processing
Group

School of Engineering and
Applied Science

University of Pennsylvania
Philadelphia, PA 19104
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10. GRASP Lab Memos:

What Can We Learn From
One Finger Experiments?
Ruszena Bajesy, David Brown
Jeff Wolfleid, Dan Peters
Technical Report MS-CIS-83-03
Grasp Lab 01

This paper describes resuits [rom recent experiments performed in our
laboratory with two different tactile sensors attached to a cartesian
coordinate system. The one sensor is in the form of a flat surface equipped
with an array of 8 by 8 strain-gage seasors on loan from the Lord Corp., USA.
The other sensor is in the form of a rigid finger of an octahedron tapered

with four sides and ended with one tip. All together the device has 133
pressure sensors. This device was obtained as part of US-French collaboration
from LAAS Toulouse, France (Dir., Prof. G. Giralt).

P W

CLON

We shall report results on calibration , on physical properties of the

sensors, limitations on spatial resolution and pressure sensitivity. We have
investigated the classiflicatory power with respect to material hardness,
elasticity and the surface texture. Finally, we outline the open problems and
the near future plans.

Tactile Information Processing
The Bottom Up Approach
Working Paper

Rusena Bajcsy, Greg Hager
Technical Report MS-CIS-83-38
Grasp Lab 09

A primal sketch for tactile information processing is outlined. It is
further argued that from the basic three primitives: hardness, surface
normals, and local curvature all other tactile features can be constructed.

The Recognition and Representation of 3D Images for
A Natural Language Driven Scene Analyzer

Amy Elizabeth Zwarico

MS-CIS-84-29 '

GRASP LAB 20

Two necessary components of any image understanding system are an object
recognizer and a symbolic scene representation. The LandScan system being
designed is a query driven scene analyzer in which the user’'s natural
language queries will focus the analysis to pertinent regions of the scene.
This is different than many image understanding systems which present s
symbolic description of the entire scene regardless of what portions of that
picture are actually of interest. In order to facilitate such a focusing
strategy, the high level analysis which includes reasoning and recognition
maust proceed using a top-down flow of control, and the representation must
reflect the current sector of interest. This thesis proposes the design
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for a goal-oriented object recognizer and a dynamic scene representation for
LandScan - a system to analyze aerial photographs of urban scenes. The
recognizer is an ATN in which the grammar described sequences of primitives
which define objects and the interpreter generates these sets of primitives.
The scene model is dynamically built as objects are recognized. The scene
model represents both the objects in the image and primitive spatial relations
between the objects)

A New Approach to Robotic Approach
Tactile Perception

Ruzena Bajcsy

Kenneth Y. Goldberg

MS-CI1S-84-31

GRASP LAB 02

Psychologists believe that tactile perception involves receptors located
in both the skin (cutaneous) and the joints (kinethetic). Research in the
area of robotic tactile perception has focused on cutaneous sensors,
producing tactile grids with increasingly improved resolution. A robot
developed at the University of Pennsylvania, however suggests that the
most efficient way to achieve tactile recognition is to process
kinesthetic information. This approach has implications for both
psychology and industry.

On Grasping With A Three-Fingered
Mechanical Hand

J. M. McCarthy

MS-CIS-84-32

GRASP LAB 03

This paper uses the generalized theory of screws to formulate the problem
-{ grasping a general solid object between the three finger tips of a
.nechanical hand, and securely holding the object against the action of an
arbitrary set of externally applied forces. A condition on the geometry

of the grasp is preseated which assures that the allowed motion of the
object can be opposed by frictional contact forces, and it is shown that
any such grasp can be broken by applying the proper choice of external
forces. The magnitude of this additional loading is a measure of the
quality of the grasp.

Computer Architecture for Grasping
Samuel M. Goldwasser
MS-CIS-84-33

GRASP LAB 04

The Integrated Tactile Network Architecture or [TNA is a hierarchical
system for managing the interaction of tactile sensing and motor coatrol
in the 3-D active sensory environment. The overall [TNA includes custom
dedicated hybrid front end tactile arrays incorporating electronics sad
microprocessors for sensor linearization, tactile information

preprocessing, and local feature extraction; approaches to the distributed
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motor coantrol of manipulator fingers for grasping; interconnection

networks for guarded movement and reflex arcs; and special purpose
hardware for model generation derived from tactile information. This paper
primarily addresses the overall ITNA structure and, in particular, the
design of an intelligent sensor array and its associated communications
subsystem.

Feeling By Grasping
Ruzena Bajcsy
Michael McCarthy
JefTrey C. Trinkle
MS-CIS-84-34
GRASP LAB 05

This paper specifies constraints based on the geometry of the grasped
object, on geometry of the hand and the kinematics of the constrained
object which determines how to grasp an object.

Surface Descriptions From Vision
and Touch

Peter Allen

MS-CIS-84-35

GRASP LAB o6

The goal of vision is object recognition. Recent research has shown that
the human visual system creates a surface description of a scene,
including depth and orientation information at all points in a scene as a
first step before creating an object centered 3D description. This
description is referred to as a 2 1/2 D sketch.

Machine vision systems presently do not have the capability of creating
this 2 1/2 D sketch from visual information alone, especially for curved
surface objects. By using tactile data in cooperation with vision, a
method is proposed for creating a surface description of an object. This
surface description uses bicubic surface patches as a primitive.

Once a surface sketch is created with bicubic surface patches the next
steps in the hierarchy of processing are feasible, including a
transformation to a full 3D object centered description.

Stereo Processing of
Aerial Images
Ruzena Bajesy
David L. Smitley
MS-CIS-84-38
GRASP LAB 07




An Architecture for the Real-Time
Display and Manipulation of
Three-Dimensional Objects

S.M. Goldwasser

R.A. Reynolds

MS-CIS-84-37

GRASP LAB 08

A special purpose multiprocessor architecture has been developed which
facilitates the high speed display and manipulation of shaded three
dimensional objects or object surfaces on a conventional raster scan CRT.
The reconstruction algorithms exploit the capability to divide object
space into totally disjoint cubical regions permitting multiple display
processors to access independent memory banks concurrently

without describing rotation, translation, and scaling are incorporated into
one short table facilitating very rapid manipulation of the image display
presentation.

A Generalized Object Display
Processor Architecture

S.M. Goldwasser
MS-CIS-84-38

GRASP LAB 10

A multiprocessor architecture has been developed which addresses the

problem of the display and manipulation of multiple shaded three

- dimensional objects derived from emperical data oa a raster scan CRT.
Fully general control of such parameters as position, size, orientation,
rotation, tone scale, and shading are accomplished at video rates
permitting real-time interaction with the display presentation.

The GODPA architecture is based on a large number of relatively simple
processing elements which access their own memory modules without input
conflict. Reconstruction algorithms are used which do not require any
complex arithmetic or logical high speed operations. This hardware
organization is highly modular and expaadible and is ideally suited for
implementation with VLSI technology.

Page Composition of Continuous
Tone Imagery

Samuel M. Goldwasser

Donald E. Troxel

MS-CIS-84-39

GRASP LAB 11

A system has been developed which represents an effective unified
framework for interactive layout and page generation of pictures and
linework for applications in the graphic arts. The functional structure
and logical organization of this system are based upon the segment display
processor (SDP) architecture which offers a generalized approach to the
manipulation of multisegment multiformat data. Interactive layout is
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o accomplished with the aid of a graphics digitizing tablet and proof TV
display. Subsequent input scanning, sizing, enhancement, and merge

v operations are fully automatic. The system handles arbltrary shaped

n: regions, type-on-tone, and optimally codes areas of continuous tone and

line art copy individually. The PAGES system described in this paper is

centered around a software emulation of the SDP supporting continuous tone
N imagery and scanned type. Most of the effort devoted to this development

will be directly applicable to an SDP-based system implemented with the

aid of special purpose high-speed hardware in the future.
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N Grasp Lab Memo:
o Construction of a Three
Dimensional Surface Model
J Eric Krotkov
MS-CIS-84-40
:j GRASP LAB 12
';f This report describes the structure and construction of an initial
- - intermediate level surface modelM, subject to the criteria and
-~ constraints imposed by the domain of stereo aerial imaging. M is
= a surface-based polyhedral network supplemented with relations. It is
“ constructed from data derived from low level vision processes, and thus
» can be aptly called *bottom-up® or "data-driven.®* At the same time the
. representation is useful for high-level *top-down® processing. The model
- *is built on top of SurfUP and has been fully implemented and documented,
including: routines to compute relations on faces; and a high level
: driver program.
Quarterly Progress Report
Volume 2, No. 1
s MS-CIS-84-41
- GRASP LAB 13
&
“ Active Touch and Robot
Perception
-, Ruzena Bajcsy
" Kenneth Y. Goldberg
. MS-CIS-84-42
v GRASP LAB 14
- Psychologists distinguisn between active and passive touch. The latter
N arises when objects are brought into contact with a passive tactile
N surface, such as the palm of the hand. Active touch describes a dynamic
N exploration of objects involving receptors located in both the
~ skin (cutaneous) and the joints {(kinesthetic). Research in the area of
> robotic tactile perception has focused on passive touch, developing
cutaneous grids with increasingly improved resolution. A robot developed
- at the University of Pennsylvania, however,suggests that the most
- efficient way to achieve tactile recognition is to process kinesthetic
< information gained from active exploration. The results may be of
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interest to researchers in both psychology and robotics.

Computational Models of
Visual Hypercuity

Eric Paul Krotkov
MS-CIS-84-43

GRASP LAB 1§

The process of visual hypercuity is described and analyzed in the terms of
information theory. It is shown that in principle, the detection and
representation of both luminance and edge features can be performed with a
precision commensurate with human abilities.

Algorithms are formulated in accord with the different representational

method and are implemented as distinct computer models, which are tested with
vernier acuity tasks. The results indicate that edge information

encoded either in the manner proposed by Marr and his colleagues

(as zero-crossings in the Laplacian of a Gaussian convolved with the

image) or when encoded as a simple filtered difference allows finer

spatial localization than does the centroid of the intensity distribution.

In particular it is shown that to judge changes of relative positions with
a precision of 0.1 sec arc in two and three dimensions, it is sufficient

to represent the displacement of an edge by the difference of two
Laplacian-Gaussian filters rather than by the difference between
interpolated zero-crossings in them. This method entails no loss of
relative position information (sign), allows recovery of the magnitude of
the change, and provides significant economies of computation.

Sphere Packing Algorithm
For Sparse 3D Points
Rusena Bajesy

Frane Solina
MS-CIS-84-44

GRASP LAB 16

An efficient way for representing objects defined by sparse 3-D surface

points is described. Data collected by stereo and range imaging

techniques can be considered as an approximation of surfaces used for

volume representation by packed nonoverlapping spheres. The technique
described here is a modification of the algorithm introduced by R. Mohr

and R. Bsjesy in Packing Volume by Spheres, [EEE Transactions on PAMI-5,
pp. 111-116, 1983.

PAMH Coordinate System
JefTrey C. Trinkle
MS-CIS-84-46

GRASP LAB 17

This paper is meant to document the various coordinate systems used in
PAMH. The matrix transformations are all defined, and their use is
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PAMH Micro Guide
Ed Walsh
MS-CIS-84-46
GRASP LAB 18

Quarterly Progress Report
Volume 2, No. 2
MS-CIS-84-47

GRASP LAB 19

Angy: A Rule-Based Expert
System For Identifying And
Isolating Coronary Vessels
In Digital Angiograms

S. A. Stansfield
MS-CIS-84-49

GRASP LAB 21

This paper presents work being done in the development of a rule-based
expert system for identifying and isolating coronary vessels in digital
angiograms. The system is written in OPS5 and LISP and uses low level
processors written in C. The system embodies both stages of the vision
hierarchy: The low level image processing stage works concurrently with
edges (or lines) and regions to segment the input image. Its knowledge is
that of segmentation, grouping, and shape analysis. The high level stage
then uses its knowledge of cardiac anatomy and physiology to interpret the
result and to eliminate those structures not desired in the output.

The Image Processing Optical
Network: Advanced Architecture
For Image Processing

Samuel M. Goldwasser
MS-C1S-84-50

GRASP LAB 22

The Image Processing Optical Network (IPON) is an ultra high
performance architectural framework being developed to support
image acquisition, low and medium level image processing and
analysis, image display, and image storage using digital and

hybrid technology. IPON assumes the use of the technology

of the 1990s and beyond including hybrid optical systems and

other novel devices which depart

from the strictly 'more gates on semiconductor’' philosophy of the past
20 years.

IPON will be an MIMD network utlilizing non-homogeneous functional

nodes of a variety of types. It will be dynamically partitionable and
reconfigurable using a non-blocking optical interconnection network.

------------------------
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[PON will support the use of optical-hybrid technology

for key components to provide high bandwidth communicatioas,
high capacity buffering, and certain types of high speed processing.
User level programming of [PON will be

accomplished using the concept of process level dataflow

control via an interactive Graphical Image Processing Language.

This paper outlines some initial thoughts on the organization and
implementation of [PON.

A Programming System For Distributed
Real-Time Applications

Insup Lee

MS-CIS-84-51

GRASP LAB 23

A distributed programming system designed to support the construction and
execution of a real-time distributed program is presented. The system is

to facilitate the construction of a distributed program from sequential
programs written in different programming languages and to simplify the
loading and execution of the distributed configuration language. The
language is used to write the configuration of a distributed program,

which includes resource requirements, process declarations, port
connections, real-time constraints, process assignment constraints, and
process control statements.

Final Report: The Design and
Construction of a Four Degree
of Freedom Camera Controller
John F. Summers
MS-CIS-84-52

GRASP LAB 24

A system has been developed that controls the positioning of a pair of camera
to provide the possibility of active visual sensing. The system uses an 8085
based microprocessor to monitor and update the position of the platform upon
which the cameras are mounted. The camera platform possesses four degrees of
freedom: up and down, side to side, pan motion, and tilt motion. The
microprocessor is interfaced to a VAX 11/750 such that programs running

on the 750 can control the platform motion. A series of higher level
manipulation programs have been written and installed as user utilities

on the VAX, running under Unix. These utilities the system user to place
control of camera positioning into the hands of image processing software.
This closes the camera positioning feedback loop, and should lead to

the development of autonomous *intelligent® camera manipulation routines.
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PAMH Control Systems
Jeffrey C. Trinkle
MS-CIS-84-53

GRASP LAB 25

This report describes the position control algorithm, in joint
coordinates, and the grip pressure controller used by the PAMI system.
The linear analysis of the position controller is given here. The results
are currently being used to determine the gains of the position
controller. The grip pressure controller presented is not yet
implemented.

Converging Disparate
Sensory Data

Ruzena Bajesy

Peter Allen
MS-CIS-84-54
GRASP LAB 28

Object recognition systems using single sensors (typically vision) are

still limited in their ability to correctly recognize different three
dimensional objects. By utilizing multiple sensors (in particular, vision
and touch) more information is available to the system. This paper is an
attempt to show the utility of multiple sensors and explore the problems
and possible solutions to converging disparate sensory data for object
recognition.

A New Development in Camera
Calibration -Calibrating a Pair

of Mobile Cameras

Alberto Izaguirre, Pearl Pu, and
John Summers

MS-CIS-84-55

GRASP LAB 27

Pennsylvania Articulated
Mechnical Hand An End
Effector To Determine
Shape By Touch
MS-CIS-84-56

GRASP LAB 23

This paper provides a description of the Pennsylvania Articulated

Mechanical Hand (PAMH)*, a mechanical hand with independent joint control
to be used for object recognition. PAMH is currently being developed at

the University of Pennsylvania. The mechanical design of PAMH is

presented and the piezo plastic tactile sensor used to determine spatial
resolution is detailed.
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Integrating Vision and
Touch For Grasping of an
Object®

Ruzena Bajesy
MS-CIS-84-57

GRASP LAB 29

The aim of this paper is to present considerations that go into the design of a system tha

For the visual sensor we assume that we have available stereo cameras or their
equivalent. As the tactile sensor we use an articulated multifingered
hand equipped with tactile sensory arrays as the data acquisition device.
We shall present available configurations of these devices. Then we shall
investigate the sensory processing, in particular what representation
schemas should be considered. We shall argue that the observer-centered
representation as opposed to the object-centered representation is more
important for grasping. Finally, a rule based schema for the control
strategies will be outlined. As examples, first some artificial geometric
objects than some real laboratory objects from the blocks world will be
analyzed.

Angy: A Rule-Based Expert
System For Identifying and
Isolating Coronary Vessels in
Digital Angiograms

Master’s Thesis
MS-CIS-84-63

GRASP LAB 30

This thesis details the design and implementation of ANGY, a rule-based
Expert System in the domain of medical image processing. Given a
subtracted digital angiogram of the chest, ANGY identifies and isolates

the coronary vessels, while ignoring any non-vessel structures which may
have arisen from noise, variations in background contrast, imperfect
subtraction, and non-relevant anatomical detail. The over all system is
modularized into three stages: The preprocessing stage and the two stages
embodied in the expert itsell. In the preprocessing stage, low level

image processing routines written in C are used to create a segmented
representation of the input image. These routines are applied

sequentially. The expert system is rule-based and is written in OPS5 and
LISP. It is separated into two independent stages: The low level image
processing stage embodies 2 domain independent knowledge of segmentation,
grouping, and shape analysis. Working with both edges and regions, it
determines such relations as parallel and adjacent and attempts to refine

the segmentation begun by the preprocessing. The high level medical stage
embodies a domain dependent knowledge of coronary physiology and anatomy.
Applying this knowledge to the objects and relations determined in the
preceeding two stages, it identifies those objects which are vessels and
eliminates all others.
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Filling in the Gaps: A
Computational Theory of
Contour Generation
David J. Heeger
MS-CIS-84-84

GRASP LAB 31

The problem of contour generation is posed as an example of perceptual
organization. A computational framework is presented which is a uniform
theory of contour generation. The same computational process derives
contours of all different types of subjective boundaries. The basic

process of contour generation is to {ill in the gaps in contours.
Psychophysical experiments on subjective contours are used to constrain
the process of filling in the gaps. The algorithm demonstrates the
feasibility of computing global properties (contours) from purely local
computations.

Detecting Tactile Feature Points
with a Robot Hand

Kenneth Y. Goldberg

Edward S. Walsh

MS-CIS-84-65

GRASP LAB 32

Changes in edge curvature can be detected by applying differential
operators to a list of boundary points. Such changes, or feature

poinls, provide a representation for object shape which is well-known in
machine vision. We apply this technique to sparse tactile data, using the
Pennsylvania Articulated Mechanical Hand to discriminate between six
sample objects.

-------------
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12. APPENDIXES
I. Stereo Processing of Aerial Images

II. LandScan: A Natural Language and ¢(
Analysing Aerial Images

III. LandScan: A Computer Vision Syste

IV. Recognition and Representation of 3D Objects for LandScan - A
Natural Language Driven Scene Analyzer

V. Implementation of a Gaussian-Smoothing Gradient-Based Edge
Detector
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Recognition and Representation
of 3D Objects for LandScan -

A Natural Language Driven Scene .Apalycer

Amy Zwarico

CIS Dept/D2
University of Peansylvania

Philadelphis, Pa 19104

Image Representation, Vision Systems, Object Recogaition

short paper
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[Radack, et al 84
Radack, Korein, Ganis, McNally, Koreia, Shapiro. [VASA
Programmer’s Guide CIS Department, University of Pennsylvania, 1984.

[Shapiro 84 Shapiro anu Haralick. A Heirarchical Relaticnal Model for Automated
Inspection Tasks. In Int. Conf. on Robotics, Atlanta, Ga.. 1624.

[Sloan 81] Kenneth R. Sloaa , P. G. Selfridge. Reasoaing about images:
Applications to aerial image understanding. In Proc. 1981 Image Understanding
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Abstract

Two necessary components of any image understanding system are an obiect recognizer
and a symbolic scene representation. The LandScan system currently being designed is a
query driven scene analyzer in which the user’s natural language queries will focus the
apnalysis to pertinent regions of the sceme. This is different than many image
understanding systems which present a symbolic description of the entire scene
regardless of what portions of that picture are actually of interest. In order to [acilitate
such a focussing strategy, the high level analysis which includes reasoning and
recognition must proceed using a top-down flow of control, and the representation must
reflect the current sector of interest. This paper proposes the design for a goal-oriented
object recognizer and a dynamic scene represeatation for LandScan : a system to analyze
aerial photographs of urbag scenes. The recognizer is an ATN in which the grammar
describes sequences of primitives which define objects. The Scene Model is dynamically
built as the objects specified by the queries are recognized. Thus the control of the scene
modelling is top-down, reflecting the user's interest in the scene. The Scene Model
represents both the objects in the image and primitive spatial relations between these
objects.

1. Introduction

LandScan (LANguage Driven SCene ANalyzer) is a goal-oriented computer vision
system which uses natural language to drive the scene analysis of 3D images of aerial
views of urban scene. Goal oriented scene analysis restricts the analysis to those areas of
the scene which are currently of interest to the user of the analyzer. Both recognition

and modelling are driven by user queries. Answering these queries will require the

{ollc wing reasoning operations to be facilitated:

1. determining the existence of an object

2. finding an object part

3. determining locative relations, both simple and complex, amoag nbjects.
The object recognition paradigm allows the [irst two operations to be performed. The
Scene Model - objects and the relations between objects - allows previously recognized

objects to be referenced and determines the locative relations among objects.

This paper will propose a solution to the problem of goal driven recognition and

representation of 3D objects in aerial views of urban scenes to be used by a language

driven scene analyzer. An Augmented Transition Network (ATN) has been chosen to




perform the object recognition because it has a top-down flow of control which fzcilitates

the interface between the queries and the recognition process. [t also represents in a
perspicuous manner the global knowledge necessary for recognizing objects ia this
domain. A dynamic scene model will be generated incrementally as the user focusses the
image analysis to areas of the image which are of interest to bim/her. The Scene Model
symbolically represents the objects which have been recognized and the primitive spatial

relations which hold between them.

First, the related work will be surveyed. Then a brief overview of the LandScan
system will be presented. Next the design of the ATN used for object recognition will te
discussed. Following this the Scene Model will be described.

2. Related Work

A large corpus of research on aerial image understanding per se exists, (Harlow 34|,
[Hwang 83|, [Nagao 79|, [Sloan 81}, (Quam 78|, [Faugeras 81], [Glicksman 83|, [Reynolds,
et al 84, [Potmesil 83jand many general vision techniques are applicable to the aerial
domain. Large aerial projects have been undertaken at USC [Nevatia 83Jand at SRI
(Fischler 83|

The 3D MOSAIC scene uaderstanding system [Herman 83|incrementally derives a
scene model of an aerial view of an urban scene. Like La.'dScan,the scene model is
dynamic - constructed incrementally as more data becomes av 1ible. Domain-specific
knowledge is used to help identify incomplete objects. A fundam~ntal difference is that
the construction of the Scene Model in LandScan is goal driv:n and reflects the user's

interest in the scene.

ATN's have been used almost exclusively in natural language processing [Bates 81],

[Winston 79, [Winograd 83]. A notable exception to the use of ATN grammars for |
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natural language understanding is the system designed by Tropf aad Walter [Tropf

83] which uses an ATN model for the recognition of 3D objects with known gcometries.
The recognition process performed by their system is one of "analysis-by-svnthkesis® in
which bypothetical model instances (prototypes) are generated and then verificd by the
ATN. The verification process compares the prototypes to the actual 3D data using the
ATN. I the similarity between the prototype and the image exceed some threshold then

the prototype is considered to be a model instantiation of the actual data.

Saapiro and Haralick [Shapiro 84| describe a hierarchical, relational 2D model
which is influential in our design. Their model provides precise, accurate informatioa to
be used by low-level vision and inspection processes as well as information required by
high-level vision and reasoning processes. All of the information is represented by using
*spatial data structures®, each conmsisting of a recursive set of relations. The hierarchy

coasists of four levels: world, object, part, and surface/are.

Rosenthal [Rosenthal 81] proppsed s model and interpreter for analyzing aerial
images of urban settings. In some ways, Rosenthal’'s work was the impetus for this
system. He proposed a purely hierarchical model of the world which is ordered by the
ON relations and a goal driven production system for the recognizer. It has a database
which contains descriptions of objects and regions. He introduced an Object Description
Notation (o encode a set of descriptors which would be adequate for the system to

describe an object in the scene.

The work of Talmy and Herskovits [Talmy 83| [Herskovits 82 [Herskovits 84] has
influenced the design of both the topological relations in the models and the choice of
linguistic attributes which must be associsted with objects in order to insure s robust

and reliable natural language interface. It is from their work that the need for a single

meaning for a single relation was discovered.




3. LandScan

LandScan is a query driven scene analyzer for 3D aerial views of urban settings
which uses low, middle and high level vision processes, high level reasozing and natural
language understanding to analyze an image. The low level image processing routines
detect edge points (edgels), perform stereo matching to obtain the 3D informstion crucial
to the higher level analysis, and segment the picture into various picture primitives -
edges and regions. The middle level imaging modules add topological properties to the
regions detected by the low level routines creating a Surface Model. The high level vision
uses the regions and topological properties of the Surface Model along with a priom
knowledge of the domain to identify a subset of these regions as an object. Operating
simultaneously with the recognizer is a modeller which creates a model of the scene
which facilitates high-level reasoning. Finally, the natural language interface and high
level reasoner parse queries, search the image for the data in question, and using the

world and object models generate the appropriate response to queries.

All low and middle level image processing is performed in a bottom-up fashion
when the digitized image is presented to the system for analysis. The high level vision
uses an ATN driven by the queries parsed by the natural language interface to recognize
objects and build the Scene Model. No high level recognition or analysis is performed
until a query is made. When a question is asked, the Scene and Surface Models are
analyzed only as much as is necessary to enable the generation of an adequate response
for the user. Only those objects expressly mentioned in queries are represcented in the
Scene Model. Although using this recognition strategy will increase the time necessary
to answer a question, it will probably reduce the overall amount of work which is done in

analyzing a scene. The system will not analyze the entire scene, only those areas of

interest to the user.




Each object in the scene is represented by a labelled set of polyhedra. The

polyhedra was chosen as the primitive for the representation of objects. This choice was
not arbitrary, but carefully considered in the system domain, aerial photcgraphs of
urban scenes. Looking at such images they appear to be composed of polyhedra of
various sizes and shapes at different distances [rom the ground. Eoth the Scene and

Surface Models are implemented in SurfsUP [Radack, et al 84].

In order to perform the high level vision and reasoning tasks required by this
system, world knowledge must also be encoded into the system. This global knowledge
will be used to recognize objects, understand ratural language queries, and search the
Scene Model to obtain an apnswer to a query. Presently, three sources of a3 prion
knowledge have been determined necessary to perform the above mentioned tasks. They
are represented by an ATN grammar which describes the manner in which surfaces are
grouped to form objects, a World Model aid an Object Model. The World and Object
Models are very similar to those in the Shapiro and Haralick [Shapiro 84] system as well
as Rosenthal's Conceptual Hierarchy [Rosenthal 81]. Like the hierarchical relational
model of Shapiro and Haralick, the World Model describes the features and relations of
the objects in the domain. The objects are those which can be expected in an urban
scene - buildings, stree.s, sidewalks, etc. The Object Model represents the expected
physical features and linguistic properties of the objects in the domain (object parts and
those features which affect the usage and interpretation of a spatial constructs - phrases
describing the spatial relations between objects) [Talmy 83, [Herskovits 82|, [Herskovits
84).

.......................
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4. Object Recognition

An Augmented Transition Network (ATN) has been chosen as the paradigm for
object recogniiion in LandScan. It is composed of three parts: the grammar, a
dictionary, and an interpreter. The grammar represents the a priori or world knowledge
that the system must have in order to recognize objects and assign them °®cultural®
labels (ie. building, street). The dictionary, Surfacc Model, represents the actual data
which will be used in the recognition process. The third component of the recognizer is
the Lisp program which provide the control structure for the process. The syntactic
approach has been adopted despite earlier failures [Fu 82). Earlier attempts using a
syntactic approach failed because the primitives which were combined were too low level
(edges, etc) and the matching sequences were too strict. In LandScan, the primitives
used are higher level (surfaces) and thus have more information associated with them.
The grammar rules in LandScan do not specify a strict matching sequence. Instead they
specify the properties which must hold between the simpler components of an object.
Since the rules are more general - there are fewer in the system thus simplifying the
recognition process. The following sections will justify the use of an ATN to perform
object recognition and discuss the three components comprising the recognizer - the
world knowledge which is represented by an ATN grammar, the visual data or

dictionary, and the ATN interpreter which drives the recognition strategy.

4.1. Justification for the Use of an ATN

The goal of the LandScan system is to perform query driven analysis of urban
scenes. This places two constraints on the object recognition process: it must have a
top-down control structure, finding only those objects references in the query, and it
must encode global knowledge about a domain in which objects of the same type may

have diverse appearances.
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The entities found in an urban scene fall into several general categories - buildings,
streets, sidewalks, vehicles, and fields to mention a few. Although the objects in the
domain are known, their appearances cannot be precisely predicted. The ATN
formalism enables the global krowledge about object appearances to be encoded as a
generative model (grammar) for constructing objects from the primitives in the scene

while driving the recognition in a top-down fashion.

Although the ATN provides both the top-down control structure as well as the
representation of the global knowledge necessary to perform object recognition in this
domain, the inherently linear ordering it places on the scanning of input does not seem
appropriate for a vision process. We do not obtain the data from a scene one "elcment*
at a time, nor is it likely that we match the features which we have learned to associate
with an object in a specific order. Instead, it is likely that we match oa *prominent®
features in the visual data. Despite these fundamental differences, the ATN is
appropriéte to use in recognition. The problem with using *prominent features® is that
it is difficult if not impossible to model these features into a system. Thus we must fall
back to describing an object in terms of the primitives which define it. The ATN
grammar presents a straight forward description of a sequence which generates an object

from a set of visual primitives.

Thus an ATN is appropriate because it has a top-down control structure, a
straight-forward description of the global knowledge necessary for performing object
recognition, and separates the control structure from the grammar simplitying

modification of the recognizer.
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4.2. The Object Recognition Grammar

The ATN grammar represents the world knowledge necessary to enable object
recognition. It is a generative model describing in a sequential manner the set of faces
and the relations between these faces which must appear in the Surface Model in order

to recognize a particular object.

The grammar as written is a set of two level networks. This is considerably
simpler than most ATN's which handle natural language utterances. Each network is
represented by a set of grammar rules. The bottom level concerns itself with the
recognition of ®simple objects.® An object is simple if its further decomposition into
parts will result in no entity which is in the domain of objects. For example,
decomposing a building with a pitched roof will result in two halves of a pitched roof.
Neither of these entities are considered objects in the domain - they are parts of objects.
This level consists of the networks SIMPBUILD, SIMPSTREET, SIMPFIELD, and
SIMPSIDEWALK. The top level combines the simple objects which were recognized in the
first level of the network into *complex objects®. A complex object is decomposable in a
nontrivial way into at least one simple object. The top level networks are BUILDING,

STREET, FIELD, and SIDEWALK.

A network is a set of nodes and arcs. The nodes represent how far the system has
progressed in the object recognition (the state of the computation). The arcs represent
the patterns (object primitives of simple objects) which mnst be matched in order to

proceed further in the recognition of that particular object.

The states have two part names [Bates 81). The first part of the name indicates
the name of the network and the second part describes either how far along this state is

in the recognition process or the subtype of the object being recognized.
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The arcs are represented by lists of the form (TYPE HEAD TEST ACTION). TYPE

indicates the category or arc type. The possible arc types in this system are:

e PUSH - call to a *simple® network
e CAT - search the dictionary (Surface Model) for an appropriate face

e POP - return to a calling network or add the recognized object to the Scene
Model

o JUMP - go to the next state without searching for a primitive object or face
HEAD is dependent upon the arc type. HEAD can be a syntactic category - words or lists
of words, a constituent type, the next state, or the form in which the data ®*parsed® is to
be returned. TEST is a list (possibly empty) of tests to be performed before the arc can
be traversed.- The tests specify the relations which must hold between various
comonents of the object, provide further checking of the featﬁra of a component, and
provide context sensitivity. ACTION is a list of actions to be performed as the arc is

traversed. The possible register setting and structure building actions are:

e (SETR REG VALUE) - sets the register REG to the evaluation cf VALUE
o (SETRQ REG STRING) - sets the register REG to the literal STRING

o (ADDR REG VALUE) - appends the evaluation of VALUE to the end of the list in
REG

¢ (BUILDQ <OBJECT _TYPE OBJECT SUBTYPE>) - builds an object instance
o OBJECT _TYPE is a major object type

o OBJECT is the OBJECT register

o SUBTYPE is the SUBTYPE register

There are two registers associated with the system - a SUBTYPE register and an
OBJECT register. The SUBTYPE register s a feature register whose value is a string
indicating the subtype name of an object. The OBJECT register is a role register

containing a list of all the faces which comprise the object. As faces are found which

match the generative sequence described by the grammar, they are added to the OBJECT
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register.

4.3. The Dictionary
The dictionary in the recognizer is the Surface Model which represents both the
geometric and topological information about the surface primitives in the scege.

(Krotkov 84}

The geometric attributes associated with each surface or face are the area of the
face, its surface normal, centroid, shape, type and compactness. The relations between
the faces represent the topological properties of the faces. In order to do recognition six
topological relations are necessary - ADJACENT, CONTIGUOUS, LOOKSADJACENT,
LOOKSCONTIGUOUS, ABOVE, aad CONTAINS. Two faces are considered
ADIJACENT if they share at least one point. Two faces are CONTIGUOUS if they
share at least two points - a segment. The LOOKSADJACENT and
LOOKSCONTIGUOLUS relations hold if the ADJACENT and CONTIGUOUS relations
respectively hold between the two faces projected onto the x-y plane. A face is
considered ABOVE another face if the z coordinate of the centroid of the first face is
strictly greater than the z coordinate of the centroid of the second face. The
CONTAINS relation means that one face is completely surrounded by another face when

they are both projected onto the xy-plane.

These topological relations are represented by adjacency matrices - one matrix per
relation. The ®nodes® in the graph represented by the adjacency matrix are the faces
which have been found in the scene. The matrix is an o x n boolean array where 0

corresponds to no relation between faces and a 1 to the relation holding between them (n

is the number of faces in the surface model). None of the relations are reflexive.
ABOVE and CONTAINS are transitivee ADJACENT, CONTIGUOUS,
LOOKSADJACENT and LOOKSCONTIGUOUS are symmetric.
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4.4. The Control Siructure

Unlike most ATN's (in natural language understanding as well as other
applications) which have been designed to parse an input string, this system will not
have an object which it wishes to parse into its components in order to confirm that it is
a valid object. This ATN interpreter operates as a generator taking a grammar and a
dictionary as input and producing strings as output. The output string from the object

-recognizer is an object instance.

The control structure for the ATN is provided by a generator which is a series of
LISP functions. The first function GENERATE is called with one argument - the
starting state of the grammar. The initial configuration (initial state, register list, stack)
is set up by this call. A function ATN is then called with the starting state. ATN is the
function which selects the arc which is to be followed. The backtracking is a simple,
depth first strategy. If the first arc fails then the next arc in the arc list associated with
the state is called. From ATN the EVALARC function is called with the arc t» be
evaluated and the association list representing the set of registers. First EVALARC
determines the type of are which is being considered as a possible transition. Once the
arc type has been determined, the function and the tests associated with that arc are
performed. Finally, if all the tests are true, the actions are evalusted by the
EVALACTIONS function and the ATN enters a new state and the traversal continues in

this fashion until a final state is reached or the functions gets halted in a non-final state.

5. Representation - The Scene Model

The final representation for the scene must facilitate the operations necessary for
high level scene analysis to be performed. These actions include determining the
relations, both complex and simple, among objects; and locating and identifying specific

objects and object parts. Since the analysis is query driven a dynamic Scene Model was
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designed which facilitates these operations, paying special attention to the representation
of the primitive spatial relations between objects. A dynamic Scene Model is one to
which information can be added to it as further image analysis occurs. The scene model
in 3D MOSAIC [Herman 83] is also incrementally derived as more data becomes
available but the modelling process is data driven. LandScan builds a model using a
query driven control. In other words, the modeller obtains more data as the user directs
the vision system to analyze other areas of the scene which are of interest to him/her.
Thus the Scene Model reflects the user's interest in the scene. Tke LandScan dynamic
scene model is especially useful because it is flexible. The accuracy of the scene model
increases as new data is acquired. Thus old hypotheses can be discovered false, deleted,
and the scene model updated to reflect the more accurate understanding of the scene. In
LandScan, when the scene analysis of a new image begins the scene model is empty. As
questions are asked, the scene analyzer/comstructor searches for the entities whose

existence is in question using the object recognizer described above. As soon as the

objects queried are found they are added to the the Scene Model. Thus the Scene Model

also reflects the history of the user's interest in the image. The Scene Model is composed
of two components: a list of objects currently known to be in the scene and a set of
matrices representing the primitive relations which have been found necessary and

sufficient for performing {urther scene analysis.

Keeping a list of objects known to be in the scene allows the addition of further
information to the Scene Model to be a trivial task. The object list component of the
Scene Model is the set over which the primitive spatial (topological) relations is defined.
Therefore adding the new tuples to the relations will only involve calculating the
relations between the new entities and the new set over which the relations are defined.
Thus the choice of dynamic model is feasible and will allow for a top-down scene

analysis.
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2 5.1. The Object List
N The first component of the Scene Model is the object list. The objects on this list
X have been recognized during previous scene analysis operations end are represented by
polyhedral surfaces alone. Thus to the high level reasoner it appears that objects are
. composed of only bounded planes - primitives at one level of representation. The use of
a single primitive (or a set of primitives which are not composed from one another) is
- conceptually clean to work with and is adequate for modelling objects in this domain.
Y Each instance of an object in the scene has the information associated with it which was
determined necessary to facilitate further scene analysis. The components of an object
record are a name, the list of faces comprising the object, its location in Euclidean three
- space, and an indication of the subtype of the object. The name of the object indicates
j the type of the object - one of the objects which can be expected in the curreat domain.
- The indication of the subtype gives more specific information about the object - the
' expectations one can have about an object when analyzing a scene. The face list
2 represents the set of polyhedra which comprise tﬂe object. The metric locaticn in
2 Euclidean three space is approximated by the centroid of the object. The centroid of an
. object in this system is defined to be the average of all the centroids of the faces on the
} face list of that object.
"
*, 5.2. The Relations
E The relations in the Scene Model represent the primitive relatio_ns or topological
:*; properties between objects in the scene. The same six relations as in the Surface Model
- are sdequate to represent all relations, both simple and complex, among objects using
E various forms of relational composition.  These six relations - ADJACENT,
{ CONTIGUOUS, LOOKSADJACENT, LOOKSCONTIGUOUS, ABOVE, and

CONTAINS - are defined over the set of all objects currently recognized in the scene.

The relations are represented by their adjacency matrices because the adjacency matrix
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is easily updated and makes composition of relations simple. Tke composition becomes a
simple matter of boolean matrix multiplication for which there are many fast and

efficient algorithms.

The definitions of the four relations are very similar to those of the Surface Model.
CONTIGUOLUS is a subset of ADJACENT. Two objects are said to be ADJACENT if

) they satisfy the following condition:
3FACE, € OBJECT; and 3FACE, € OBJECT,
such that FACE; ADJACENT FACE,

OBJECT; is CONTIGUOUS to OBJECT, if:
3FACE; € OBJECT, and 3FACE, € OBJECT,
such that FACE; CONTIGUOUS FACE,

Once again, CONTIGUOUS is a subset of ADJACENT. These two relations are caly
symmetric. LOOKSADJACENT and LOOKSCONTIGUOUS are defined similarly for

the faces projected onto the x-y plane.

The ABOVE relation is computed by performing a simple comparison of the
location fields, centroids, of the two objects. If the centroid of OBJECT, is higher from

the ground than the centroid of OBJECT, then:
OBJECT, ABOVE OBJECT,

The CONTAINS relation is the most difficult relation to compute . First the
i boundary of the face list component of each object must be calculated. These boundaries

: are then projected onto the xy-plane. The relation is then defined as {ollows:
Boundary(OBJECT;) N Boundary(OBJECT,) = Boundary(OBJECT,)

then OBJECT, CONTAINS OBJECT,
Boundary(OBJECT,) N Boundary(OBJECT;) = Boundary(OBJECT,)

then OBJECT; CONTAINS OBJECT,

ABOVE and CONTAING are only transitive.
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8.3. Justification of the Scene Model

It remains to show that the proposed Scene Model both adequately represents the
objects in an image and facilitates the successful execution of analysis operations. As
mentioned above, most of the analysis operations will fall into one of three categories:
determining the existence of an object, finding an object part, or computing the relation
which represents a locative construct relating objects. The existence of objects will be
resolved in one of two ways - finding the object in the scene model by searching the
object list, or using the recognizer to find a new instance of the object. To find a part of
an object its face list will be searched until the part is found using the global knowledge
about parts embodied in the object model. As for resolving the interpretation of locative
constructs, the relations allow objects to be located relative to other objects in the scene
using simple matrix operations. Suppose the question were asked, *Is there a car on the
street?® An object of type CAR is ON an object of type STREET il the following

primitive relations hold:

CONTAINS(STREET,CAR)
ABOVE(CAR,STREET)

The reasoner would determine if the CAR is ON the STREET by calculating the

following relation composition:
CONTAINS * ABOVET

which would be calculated by a simple matrix multiplication of the CONTAINS
adjacency matrix and the transpose of the ABOVE adjacency matrix. So the
understanding of relational expressions will be accomplished by composing the primitive
relations. The necessary compositions of primitive relations will be determined by
linguistic knowledge used by the natural language interface in understanding the queries.
Since the model facilitates these three operations which are essential to any scene

analysis it, in fact, is robust enough to be used by the LandScan image understanding

system.
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8. Conclusion and Resulta

The recognizer and Scene Mode!ler are currently running on synthetic data. The
low level modules have not yet been interfaced with the high level modules. However
both have been tested on several different data sets. Figure 1 shows one synihesized
data set with the surfaces labelled. Figure 2 shows some results of running the

recognizer on this data.

This paper has described two modules of the LandScan system - the object
recognizer and Scene Model. It is the Scene Model which is used by the natural language
interface to answer queries about the scene. | This representation of the image provides a
module which allows the primitive spatial relations represented in this model to be
combined and analyzed by the high level reasoning processes to reflect the meaning of
the user's query. This provides a tool for analyzing a computational model for
understanding locative phrases (natural language utterances about the spatial relations

between objects).

The ATN fonﬁalism has been adopted for the recognition process. This choice was
made because the formalism has a top-down flow of control which can be driven by
natural language queries and a grammar which describes in a perspicuous way a method
for finding the set of primitives which represents an object. The grammar does so by
representing recognition as a generative process which finds a set of faces corresponding
to a object in the scene. This search is constrained by the features which the faces must
have and the various primitive relations which must hold between faces in order for the
surfaces to be in the set defining the object. Although a recognition scheme in which
primitives must be matched in a specific order seems an odd choice for visual processes,
it has been shown that the formalism is applicable to the domain and at some future

time, it might be possible to design an interpreter which is not constrained by a left-to-
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right parsing/generating strategy. An additional advantage of the ATN is that the
recognition module will interface easily with high level reasoning processes. The
reasoner will determine from the query the objects of interest. [t will then call the
recognizer and ask it to find those objects. When this has been done, the reasoner will
be able to generate the proper response to the question. The recognizer also interfaces
easily with the scene representation coanstructor using the BUILDQ action to add objects

to the Scene Model.

A symbolic representation for the scene and objects in the scene has been presented
which will facilitate high level reasoning processes driven by goal-oriented a' -'ysis. The
dynamic Scene Model is constructed as LandScan is queried, thus reflecting the user’s
change in focus. The Scene Model has two components: a list of objects curreatly
known to be in the scene and a set of primitive Iccative relations betwecen these objects.
The object representation facilitates operations in which a part of an object is in
quationi. The object list and recognizer will allow the existence of particular objects and
object parts to be determined. It has been shown that the six primitive ocative relations
- ABOVE, CONTAINS, ADJACENT, CONTIGUOUS, LOOKSADJACENT, and
LOOKSCONTIGUOUS - can be composed to obtain information about more complex
relations between objects as embodied in locative constructs. Thus the recognition
paradigm and Scene Model proposed will facilitate the top-down analysis of aerial images

guided by natural language queries.
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) Figure 1: Syathesized Urban Scene
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: Results of Running Recognizer on F
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[ntroduction

Over the years much work in computer vision has been done using aeriai images as input
data. Typical applications involving analysis of acrial images are automatic map generation,
analysis of natural resources, analysis of recomnaissance photos, and zuidance :vstems for
autonomous tlying vehicles. Curreatly, we are working on a complete system (hat will take as
input a high resolution, low aititude stereo pairs of urban scenes and will produce a high level
description of the scene. It is hoped that a query language can be formulated with which

inquiries such as, “How tall is the building under the cursor?™ can be answered.

To achieve this goal 3-D information must be extracted from the image. To extract 3-D
information we have opted to use passive stereo. The main advaatages of chis tcchnique s

that it passive (2s opposed to active techniques suca as radar) and it rcquires no special rany»

gathering hardware other than the cameras themselves,

While stereo techniques have been successful in the Aeld of cartog:zphy, their viafuliicss
has been limited when used to extract 3-D information {rom urban scencs. The major prob-
lem with sterco is that of determining the correspoadence between pixcis in the two imuyes.

A pixe! in ose image may have many caadidzte correspondences in the other.

In urban scenes the caorrcupondence probdlem is made sven more difficult, do to several
factors. A major problem is brought about by the way the images arc aobtained. To creai= a
iarge cnough bascline for adequate stereo scparation the aireraft that is taking the :hutos
must first take onc photo, travel a distance equai to the daseline and tske another. Two probd-

lems arise from such 2 process. One is the existence of moving objects such as aatomobiics.
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caused by depth. . Another problem created by this diffcreacs ia time and cc-itiva is that
there can exit photometric diffcrences be.wezn the two imayes. Atmcsnharic vanctions such
as ciouds can cause the two images to differ in focus, contrast, :=Jd average intcasity, heacs

-2
The matcher must now distinguish between disparitics caused bty cction and dispurities
E
! making uniform feature extraction difficult.

In addition to the problems introduced by having two images takcn at qiffering times,
the rapid changes in depth that are prevalent in urbaa sxccaes also increase the difficulty of
the correspondence problem. Rapid changes ia depth cause occlusions. Thus certain f(carures

visible in one image may anot be visible in the other. The matcher must therefore take into

account the fact that aot ail features in one image aeed match a feature in the other image.

Goals

We wish to generate a relatively accurate depth map given two aeriai, stereo photos of
an urban scene. Here we are working with images of Washington, D.C. We will aot attempr
to gemerate a ccmplete disparity map using only stereo. That is, we will not try to match
every pixel in the two images. Oune reason that we are aot artempting to jcacrate a ccmplcte
map is the feeling that a complete, accurate depth map wouid be impussible to obtain {roc-
the images we arc providiag as input. Secoud, we fecl that ./ we arc provided with accurate
depth puiats in locations that lenad themselves to reasonabie iaterpolation, then ‘ve can do an
adequate job of filling in the depth map during a 3-D interpretation phase, possibly aided by
monocular depth cues. Another requirement of the depth map generstor is the need that it
be formulated in a2 way that parallel implementation using hardwace could be realized. In
addition, we would like the matcher to be 2s robust as possible thereby extending its applica-

bility beyoad that cf analyzing aerial photcs of cities.

A revicw of the literature leads to the classifying of siereo matching techniques into two

major groups, that of arca based matc:ing and the other group that attempts to m=atch

1
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featurcs such as edges, or zero crossings of an image convolved with a difference ol gaussian !
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(LOG) operator.

The arca bascd 2pproach attempts to macch the two im.ges by taking a window from
one image and finding what part of the other image Zives a mamimum correistiva. Since

correlation is mathematically expensive some methods use an “interest opcrator” to selesct
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those arcas of the image that are to be matched {Moravec 1999}, (Geanery 1980]. The area
based approach has been shown to produce good resuits when processing aatural sceccss but
when applied to cuitural scenes with many occluded surfaces the results are uaacceptable.

Thus, we decided to use feature based matching as the basis for our depth map geaerator.

Severai algorithms based on feature matching seemed to be particularly applicable to
aerial image processing. One such method developed by Grimsom [Grimson 1950 matches
features which have beea extracted by seasing the zero crossiags in the ditferemce of two
Gaussians or as it is more commouniy referred to in the literature, the DOG fiiter. Further-
more, the image is processed at four different spatial resolutions with the matches {rom the

lower resoiution fiters guiding the matching process at the higher resolutions.

An algorithm deveioped by Baker [Baker 1982) and a simiiar one ‘‘eveloped by Arncld
[Arnoid 1983] ziso scemed to be appropriate to the task of generating the resuits we desirad.
While there exist some differences between the aigorithms, the main priacipic behind botia of
them is that of achieving an optimum set of matches for cach cpipolar line ia the image. The

way that this optimum match is found is by assigning each possible way of combining the

eages found in cach line a probability that cne matches with the other. Tais probability is cal-
culated from numerous parameters are gathered from the edze and other local informziion
from the neighborhood arcund the edge. The assignment of sdge correspondences which pro-
duce the largest total probability is then computed using a dynamic programming techniyue

kaown as the Viterbi algorithm [Ferney 1973).
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o
_$ As mentioned previously, we decided to march features along epipoiac lines. The current
P
:: version of the matcher uses zero crossings of an image convoived with the DCG uperater
§ (Grimson 1980]. However, before extracting the features for matching we filter the images
::: using a non-linear fiter which we call a “double window smoother” [Lee 1983]. The flter con-
~, .
::-: sists of both a median fiter in combination with a mean filter. However, the two are Oiued in
o
such a manner that almost all impulse notse is removed, high frequency noise is suppressed
.
'.::: and cdges are still retained. While the flter is effective in removing noise, its effects oa the
::: extraction of zero crossings is minimal, hence the procems adds to the robustness of the
' matcher.
'-':‘. As in Grimsou’s matcher we diter the image with a dog flter:
.f.':
yoh .3
' r’—Zcz). 23
¢
o
- w = 2VIs
-
~ at four differcat widths (w = 32, 16, 8, 4) and use the matches from the lower resoluticn
:.1- images (large w) to guide the matcking process at higher resolutivas (small w). However, the
\'- matching process at cach level and the method by which the nreviously found matches are
. used to guide higher resolution matching are significantly differeat from Grimsoa's method.
"' At ecach resolution level 2 t'wo stcp process is used to determine whetaer a givea zero
.-\ crossing in one mage corresponds with 2 zero crossing in the other image. [ will cail the ‘wo
phases absolute and probabilistic. 1n the absolute phase zeveral characteristics of he tvo zero
;f- crossings in question are compared and if they fail to meet a certain criteria rhe corrcspen-
A deace probability is a given a value of zero. [f the pairing is 2ot re;ccted in the adsciute phase
.. a probability is caiculated that the two edges match. These protabilities (from both the anso-
".'_', lute and probabilistic phase) are then entcred into s matrix, and tae modified YVitcrin aigo>-
-:-‘
v rithm [Baker 1982] is used to dctermine the disparity profile that produces the lacgest total
o




probability.

Absolute Phase

If an cdge pairing fails to meet any of the following criteria a probability of zzro is
assigned to the edge.

Cl. The differeace between the orientation of the two zero crossiags

must be less thag 30 degrees.
C2. The signs of the siopes of both zero crossings must be the same.

. C3. The disparity must be less than some 2 priori determined

maximum disparity.

* C4. lf a zero crossng in the current resolution image is within
+-w/2 of a matched zero crossing in the previous image, the
disparity must be withina +w/2 of the disparity asigned to

the zero crossing in the previous image.
CS. All disparities must be of the same sign (moaotonicity).

C6. The scarch range for corresponding zero crossings is constrained
by the matches found in the previous resolution image. Aay

corresponding zero crossings (ound outside this range are rejected.

C1 thru C3 require no further discussion as they iantuitively scem reasonable, and have

been shown to be effective disambiguators by Grimson. C4 was chosen as heuristic based can
the assumption that the previous matches were correct and therefore @ maich in acighborhecd
around this match in a higher resolution image should have a similar dizparity. The loculi:ia-
tion error of the zero crossings appears to be +-w/2. Thar is, a zero crossing is withia +-w/2
pixeis of the actual intensity change giviay rise fo the zero croxsing. Hence, the chowc: v 2

aeighborhood size of +-w/2.
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A major assumption was made sbout the images. It is issumed that the images possess

the property of moctonicity. Mounotonicity is the property that all disparities are «f the samz

sign. That is if:
L, marches wish Ry and L > L,
:: then
<
w L 3 must masch with an an Ry such thas
-T R> R,
: where L, is the y coor. of 1ero crossing in left image
and R, is the y coor. in righs image.
,; Tall, narrow objects or large overhangs lead to 2 violation of this assumption. However,
,,:: the near orthographic projection found in aerial images severly limits the chances that such a
~
:‘:: violation would occur. Assuming monotonicity and accurate previous matches, ailows one to
hat
use CS and C6 as absolute criteris. Thus, C5 caforces monotonicity in the current resoiution
"~ matches. If C6 is violated, monotonicity between the curreat resolution matchcs and the
b
'.':-: matches from the previous level is violated. Assuming monotonicity also wlows oac ta use the
o
4 Viterdi algorithm to determine the maximum probability disparity prodle.
L Prebabilistic Phase
\.I
y After the absolute phase there can still exist more than one candidats match for a given
'_j zero crossing. Each of these remaining pairings is assigned a probability baccd ca what [ wil
N
- call one-sided correlation.
N As was mentioned earlier, area based matching was successful in creating disparicy maps
":', for scenes with smail amouats of occlusion. However, they failed when prescnted scenes with
N
o/
’: a large number of occluding surfaces. The reason for failure is that when trying (o correlate
~
N
"
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an area of an image which contains an occiuding surface, purt of that area has ao corrslar:
Thus, the correlation found wiil be useless for that part of the image. [n addition, correlation

is computationally extensive. Que sidzd correlation overcomes these problems.

In matching, oanly those zero crossings with orientations greater than 30 degrees from
horizontal are coasidered since disparity information from horizoantal cdges is extremely
difficuit to achicve. In one-sided correlation a correlation window is centered around the zero
crossing and is divided into two regions by a vertical line. A normalized correlation valuc 13

thea calculated for both the left and right hand regions formed by the vertical line, usiag ths
following equation:
i
7(q) = (E(q.z)_(z (4a ))3"1

& (q192)—E (q:1)E (q2)
o(q17 (@

N =

Normalized correlation is used to help eliminate the cffects of photometnic differences
between the two images. The probability that the two zero crossings match is thea assigned to
the maximum cocrelation value of the two regions. If this probubility is less than some thres

bold (chosen to be 85) the probatility is set to zero.

The above procedure eliminates the occlusion problem associated with norinal correia-

tion. To see this consider the following possibie results from one-sided correiation:
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Case 1. Correlation vaiues from both left iad right hand sive

of edge are low.

Case 2. Correlation values from both left and right hand side

of edge are high.

Case 3. Correlation value for left hand side of edge is low, and

right hand side is high.

Case 4. Correlation value for right hand side of edge is low, ind

left hand side is high.

Case | corresponds to the case where the given zero cromsing -orrespondence is iacorrect.
Cass 2 corresponds to the situation where the zero cromiags are NQOT occluding thus both
areas on the left and right sides of the zero cromsing cause high correlation values. Cases )
and 4 are similar in the sense that they arise when the zero crossings in question are occluc-
ing. Thus, the arca on one side of the zerc crossing need not correlate bt the areu on othes
side (it this is indeed a correct pairing) will. Hence, in 13y one of the cass a high correlation

value for at lcast one side of the zero crrming corresponds to an actual macch.

The forementioned process thus handles the occlusion problem. It also Jeals with the
computational expense of correlation, as only the most likely painings have a correlation valus

calculated for them.

After the correlstion values are calculated for each zero crossing pair and thresholded.
there still remuins ambiguous matches. Therefore, the probabilities for all painings ars
entered into a2 matrix aad the modified Viterbi algorithm described by [Baker 1982] is used t)
determine the most likely disparity profile. The pairings giving cise to this prefile ace then
recorded and used to guide the next higher resolutiva matching process. As these matctes are

required to guide the next level of matching, a simple linear interpolation process is
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performed to give disparity vaiues to all vertical neigiibors of «cro crossings that have becs

matched thereby increasing matching performance at the aext lowest cvei.

Rewuits

Matching results for one image (figure 1) can be scea in Sgures 2 thru 5. These are the
results from the various resoiution flters (w = 32, 16, 8, 4). The bottom image in cach figure
are the zero cressings matched from the left image and shifted by taeir corresponding amount
of disparity. [a addition, the inteasity of a pixel is directly proportional to its disparity. The
number of incorrectly matched pixels can be estimated from this display by comparing pixel
intensities to those of their neighbors. Any sharp difference represents inconsistent matches.
Furthermore, if the shifted pixels vary greatly in position from those of the right image, this
100 represeats incorrect matches. Using these factors as criteria, the aumber of incorrectly
matched zero crossings in the highest resolution (w = 4) appears to be quite small (less thaa
10). The aumber of zero crossings in the left image is 2264 hence only 5% of the matches are
incorrect. While the agumber of incorrect matches is low, the number of accurate matches is
enough to allow the generation of a surface using simple linear interpoiation between matched
Zero crossings on a given line. If there does not exist two zero crossiags to interpoiate
between, the disparity values are obtained from the previous line. This technique is currentiy
used omly to produce a displayable disparity map and a more robust interpolation technique
may be aecded to produce a more accurate, complete disparity map {rom the sparsc match

potnts. Figure 6 is an isometric view of the surface geuerated using this technique.

Conclasions

One-sided correlation in combination with some simpie, absoiute criteria for matchiag
produccs many accuratc natches. Further improvements in the quality of matches cculd pos
sibly be achicved if some other feature than zero crossings were used. Oune might coasider

using 2 robust edge detector such a3 the one proposed by Canay. Another area for possitle
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improvement 'ies in the interpclaticn of the surfacs. \a accurate dispanity map gencrat=g at

cach level would heip the aext lower level of matching rejeet false matches.

Cne-sided corrciation appears to disambiguate false matches as accurately as standart!

correlation but avoids the problems that arise when attempring to deal with occlusions. This
feature is highly dcsirable when working with aerial images of urban scenes where occlusicn is
promiacat. In addition one-sided correlation can be used to determine wherder a matched
zero crossing is an occluding zero crossing [Witkin]. This additional information can the be
used to guide the interpolation step since kncwing whether an edge is occluding can greatly

coanstrain possible surfaces.

Furthermore, the speed of our algorithm could be greatly increased with the addition of
special purpose hardware. High speed processors to perform the DCG and zero crosmng
operations have aiready been developed [Nisha 1983]. [n addition, since correlation is a well
uanderstood and widely used mathematical technique, many high performance algonthms and
processors exist to do correlation at speeds greater than those achicvabie om a typical SISD
computer. Since no inter-line dependencies cxist, a third method for achieving greater specd

is 0 dedicate 2 processor per line.

Several proposed algorithms [Baker 1982][Ohta 1982] ‘or the sterco matching probicm
attempt (0 increase the accuricy of the matches by using tbhree dimensional coasustency
between matches as a constraint. While this technique is =ffective at removing a large aumber
of false matches, thc final result usuaily retains a smalil perce=atage of fal;e matches. Hence,
ouc nceds to weigh toe advantages of reduced false matches (but aot ail falsc matches) to the

disadvantage of the increased processing required to enforce three dimensional consistency. U

the matching process produces a very smail aumber of filse matches (as does one-sided corres-
lation) one should comsider dealing with the false matches at interpolation time as opposed fo

trying to excize every false maich (3 aeur impossible task) with such techriques as rhree

dimensional consistency.
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Finzlly, the aced to use dyoamic programming io srovide the ortimum dispanty profile
can be questioned. Usuaily, no ambiguous matches are entered iato the matnx aad scidom

docs a given zero crossing have more than two candidate matches. Thus, a simpier method of

TN T FESEE T &S rvVAWw

disambiguating such as simply taking the maximum probability of the ambiguous matca to be
the match, might be as cffective as dynamic programmiang in building the final prodle. How
ever, 3 useable procedure has yet to be developed.

In conclusion one-sided correlation appears to be an cffective, cfficieet mesas of extract-

ing depth information from a stereo par.
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Windsws seiected for matching
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* Figure 2. Results with filter width = 32,

. Top left image - edgels detected in ieft image

I Top right image - edgeis detected ia right image

? Bottom image - edgels matched in left image shifted and

: weighted by their disparity.
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Fignrs 3. Results with filter width = 16.
Top 1=t image - cdgels detected in left image
Top right imag: - edgels detected in right image
Bottom image - ¢:dgels matched in left imzge suifted aad
wcighted by their disparity.
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rigure 4. Results with fiter width = 8.
Top left image - edgeis detected in left image
Top right imagc - edgels detected in rigat image
Bottom image - edgels matcoed in left image shifted aad
weighted by their disparity.
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Figure 5. Results with flter width = 4.
Top left image - edgeis detected in 'eft image
Top rizht image - edgels detected ia right imaye
Bottom image - edgels matched in left imuge shifted and
weighted by their disparity.
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Figure 6. [sometric plot of interpolated aisparities

CACNN

F »
s
2
'y,
i’;_;
{\
&,\.
."
%3
E«
I,
5
) "-
&
/.
l.
"l




: IMPLEMENTATION OF A GAUSSIAN-SMOOTHING
GRADIENT-BASED EDGE DETECTOR

» By David Talton

N

M University of Pennsylvania
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N Abstract
. This report describes the theoretical aspects and implementation details of a
- gaussian-smoothing, gradient-based edge detector. This edge detector is based

on Canny’s “Finding Edges and Lines in Images” [1]. In this report we discuss

3 the implementation of an algorithm and the results rather than the motivation
:; for the computation.

)

. This report describes research done at the GRASP Laboratory of the University
5 of Pennsylvania’s Moore School of Electrical Engineering. Support for the
laboratory’s vision research is provided in part through the following contracts:
i ARO DAA6-29-84-k-0061

; AfOSR 82-NM-299

: NSF MCS-8219196-CER

> NSF MCS 82-07294

> AVRO DAAB07-84-K-FOT77

. NIH 1-RO1-HL-29985-01
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This report describes the implementation of an edge detection algorithm
based on the computation of the gaussian smoothed gradient of an image. It
describes the computation of the gradient and the procedure for locating edges
(Canny[1]). The ideas for this algorithm are from Canny(l]. This algorithm
locates local-maxima in the gaussian smoothed gradient of the image at a partic-
ular scale. No attempt is made to combine results across scales. The two steps
are described below: image gradient computation and non-maxima suppression.

IMAGE GRADIENT COMPUTATION

Let 7(x y) be the image intensity function and
G (z,y) be a gaussian filter where

Lz1aoD

G(x.y)=e 2

We wish to compute the gradient of the gaussian smoothed image at some

scale, this is
V=V (G)
where
f(x)=G(xy)*(sy)

The scale is determined by the standard deviation («) of the gaussian filter.

Now,
v/ =i, +if,
or,
v /=Y (G)
=i(G*), +j(G"*I),
={(G,*1)+;(G,*I)

This means that to compute the image gradient we compute its components:
the x-directional derivative and y-directional derivative of the image.
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From above we have,

[s=G, "1

fy=G,*1

and the filters are,

(345D

Gi(zy)==pe *
3

(s3]
Gy(xy)==Te

Thus, we compute the directional derivatives of the image at a particular
scale by convolving the image with the filters G,(s») and G,(x.y). From the
directional derivatives we compute the gradient magnitude as

Vi VLTS,
and the gradient direction as

/
DIR =tan~!{=L-
{f: }

The filters G,(zy) and G,(zy) above, are 2-dimensional filters. Because
these are separable filters we may compute the above convolutions by convolv-
ing twice with one dimensional filters.

This is,
G,(xy)=G,(2)%G(y)

G,(X J)‘G,(}).G(X)
and the computation of /, and /, becomes

[:=G,(x)G ()™

[,=G,(r)°G (2)%
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O

The order of the convolutions does not matter. To compute the gaussian
smoothed gradient of the image four one-dimensional convolutions are needed.
The filter coeffrients are computed by integration of the filter over the pixel
area rather than simple sampling. As usual [1][5][6], we can vary the scale of

the gradient calculation by varying the standard deviation (¢) of the gaussian
(low-pass) filters.
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NON-MAXIMA SUPPRESSICN

To locate local maxima in the image gradient we use Canny’s scheme for
non-maxima suppression [1]. That is, we compare the gradieat magnitude for a
given pixel (A) with the interpolated gradient magnitudes in the gradient direc-
tion (at points B and C).

Non-maxima suppression [1].

If the gradient magnitude at point A is greater than the magnitude at both
points B and C, point A is designated a local maxima.. Computationally, it is
easiest to make this comparison using the directional derivatives 7, and /,
before computing the gradient vectors because the interpolation weights are
ratios of these values (see Canny{1] p. 82-83). See figure 3.

CROWLEY'S "PEAKNESS*

Another method for locating maxima in the gradient magnitude array is
Crowley’s [3] "peakness” measure. This method compares a pixel's gradieat
magnitude with the gradient magnitude of 8 neighboring pixels. Pixels which
lie on ridges have a high “peakness” because they have a higher gradient magni-
tude than most of their neighbors. The edge maps in figures 4 and 6 were gen-
erated using Crowley’s method.




PERFORMANCE EVALUATION

How can we judge the performance of an edge dstector? Just what does it
mean to detect edges? What is the purpose of edge detection? There is little
agreement in the vision community over the definition of an edge and (I
believe) a growing concern over the purpose of edge detection and the nature
of low-level vision. Edge detection has usually been used as a preprocessing
step for some higher-level vision task (i.e. stereo, shape, etc.). Researchers
have been overly concerned with edge-detection methods, to the point of ignor-
ing the edge detector’s interaction with other visual processes. The procsdure
for edge detection discussed above also ignores interaction with other processes.
But, since we have developed a fairly successful adaptation of the edge detec-
tion described in Canny(1], I will discuss the more direct aspects of this imple-
mentation. :

This implementation coasists (as most edge detectors do) of two fundamen-
tal steps: derivative computation and feature detection. To be more specific,
this edge detector fits the mold of a “detection function” (Crowley{2]). That is,
linear filtering, followed by a non-linear decision procedure. The algorithm
described above also adds an in-between step (non-linear, filter result combina-
tion) because we are computing the gradient magnitude. I am most satisfied
with the method of derivative computation, and less satisfied with the non-
linear decision procedure called "non-maxima suppression”. There are several
ways to detect ridges in the gradieat, and we intend to study a few of them
quantitatively. These include Canny’s[1] non-maxima suppression, Crowley’s
ridge detector{3] applied to the gradient magnitude map and another method of
my own device based on Haralick’s Topographic Primal Sketch{4].

The non-maxima suppression scheme of Canny is sensitive to scale in that
the distance to the comparison points should vary with resolution. It is not
obvious for which scale the non-maxima suppression scheme is best. In gen-
eral detection functions (which work on a 9-pixel neighborhood) used after
smoothing with gaussians of different sigmas are not equivaleat.

We seek connected, smooth, 1-pixel wide contours. Canny’s non-maxima
suppression scheme does not insure this. I am interested in a local procedure
where nearby edges reenforce each other over the one-to-two pixel range to
produce short edge segments. I am interested in producing this directly from
the decision procedure.

The method described for computing the linear, gaussian-smoothed,
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directional derivatives of the image is directly generalizable to the computation
of the second derivatives f,, f,, and /,,. These are computable by separable
filters as above. I have seen no implementation of the laplacian of a gaussian
[5] using these (separable) derivative filters. All implementations use the
Difference of Gaussians as an approximation to the laplacian of a gaussian
because the DOG can be implemented using separable gaussian filters. But
implementing the laplacian of a gaussian can be done directly using the filters
specified above. The computational complexity is the same as the difference of
gaussians. (four one-dimensional convolutions)

In the future we will investigate the combination of edge detection results
across scales[6]. We have not addressed the question of sampling frequency in

scale space (one octave, half octave or something else), this again will be left
for future study.
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Figure 1. Cup image.
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Figure 2. Gaussian-smoothed gradient mqhitndc of image.
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. Figure 3. Edges detected using Canny’s [1] non-maxima suppression.

» Figure 4. Edges detected using Crowley’s [3] ridge detector.
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Figure 5. Washington D.C. image.
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' Figure 6. Edges detected using Crowley’s ridge detector on the gaussian
'y smoothed gradient magnituds.
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Abstract

LandScan (LANguage Driven SCene ANalysis) is presented as an integrated vision
svstem which covers most levels of both vision and natural language proccssing.
Computations are both data-driven and query-driven. In this report ‘ve focus on the
design of the vision modules. Future work will investigate in more detail the design of
the natural language interface.

The data-driven system employs active control of stereo camecras for image acquisition,

and the bottom-up flow of control dynamically constructs a surface model from rultiple
acrial views of an urban scene.

The query-driven system allows the user’s natural language queries to focus analysis to
pertinent regions of the scene. This is different than many image understanding systems

which present a symbolic description of the entire scene regardless of what portions of
that picture are actually of interest.

A top-down flow of control dynamically generates a scenc model after creating the
surface model. The object recognizer is an ATN in which the grammar describes
sequences of primitives which define objects and the interpreter generates these sets of
primitives. The scene model is dynamically built as objects are recognized, representing
both the objects in the image and primitive spatial relations between these objects.
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Abstract

" LandSecan (LANguage Driven SCene ANalysis) is presented as an integrated vision
system which covers most levels of both vision and natural laaguage processing.
Computations are both data-driven and query-driven. In the report we focus on the
design of the vision modules. Future work will investigate in more detail the design of
the natural language interface.

The data-driven system employs active control of stereo cameras for image acquisition,
and the bottom-up flow of control dynamically constructs a surface model from multiple
aerial views of an urban scene.

The query-driven system allows the user’s natural langiage queries to focus analysis to
pertinent regions of the scene. This is different than many image understanding systems
which present a symbolic description of the entire scene regardless of what portions of
that picture are actually of interest.

A top-down flow of control dypamically generates a scene model after creating the
surface model. The object recognizer is an ATN in which the grammar describes
sequences of primitives which define objects and the interpreter generates these sets of
primitives. The scene model is dynamically built as objects are recognized, representing
both the objects in the image and primitive spatial relations between these objects.

LandScan:
A Natural Language and Computer Vision System
for Analyzing Aerial Images

1. Introduction

The aim of our research on LandScan (LANguage Driven SCene ANalysis) is to
develop a system capable of dynamically updating and maintaining a model of an urban
world over muitiple aerial views. The system will have a natural language front end,
through which users can query the system about what it sees, and to direct or
interactively assist the vision processing by restricting the analysis to those areas of the
scene which are of current interest, dynamically constructing models as the system is

queried.

A unique contribution of the work is that processing is both data-driven (*bottom
up,® determined by sensor data) and query-driven (®top down,* determined by user

queries). The integration of both methods into one system can help overcome the

shortcomings of each method employed independently. For example, if data-driven
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processing were able to segment a graph of edges derived {rcm the image into several
different connected components, query-driven information about what the system should

be looking for can help impose structure, and a unique segmentation, upon the otherwise

ambiguous data.

The data-driven processing starts with stereo aerial images and proceeds, by
filtering, matching, interpolating, and fitting, to reconstruct the surfaces in the scene.
The aerial domain buys the simplicity of planar surfaces. Two factors distinguish this
data-driven system from m.any others. First, image acquisition is controlled by feedback

tom the query-driven system, and is undertaken by active sensors, actively probing the

~ eavironment. Second, the controlled environment of a scale urban model is a testbed

allowing precise verification of results and individual modules (it is being tested on real

images as well).

For query-driven processing an Augmented Transition Network (ATN) has been
chosen to perform the object recognition because it has a top-down flow of control thus
facilitating the interface between the queries and the recognition process. The scene will
be represented symbolically by the objects which have been recognized and the primitive
spatial relations which hold between them. The Linguistic Analyzer performs syntactic
analysis of the query to produce a symbolic }epraentation which is then processed by
th- Reasoner. The Reasoner, using global knowledge of the domain will perform the

following reasoning operations:

1. determining the existence of an object
2. finding an object part
3. determining locative relations, both simple and complex, among objects.
It will also handle in a non ad hoc manner query failure. Also, the state of the Scene

Model represents the history of the user's interest in the scene.

-----
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This paper will describe the aerial domain, some related research, the
implemeantation of the data-driven and query-driven portions of the LandScan system,
and our plans for future work. A later paper will detail how natural language queries

will interface with LandScan to guide the scene analysis.

2. The Aerial Domain

Aerial images suffer from a poverty of context due to the great imaging distances.

Urban scenes contain featureless areas and large numbers of occlusion edges. Even with
the best possible use of image data, we generally can do no better than to compute a
sparse depth map of the imaged scene. For maay purposes a sparse depth map is
inadequate, and the missing surface information must be obtained from other sources:
other ®shape from ..* processes, domain-dependent high-level knowledge, and real-

world constraints.

There are two major constraints in the aerial domain:

1. The data is obtained by taking aerial photographs of an urban environment.
Urban scenes are characterized by an abundance of straight lines. This
means that to a very good approximation the scene, as viewed {rom on high,
is composed of planar polyhedra, so that detected edges separate planar
surfaces, i.e., each edge arises because it is the intersection of 2 planar faces.

[ 3]

. The image acquisition process is under our control, so the camera model is
known. Some combination of azimuth and elevation angles, Euler angles,
pan. roll, ti't angles are available and fully specify a 4x4 homogeneous
transformation relating the position and orientation of the two cameras.

Domain knowledge includes suck facts as roofs of buildings tend to be parallel to
the ground plane, while walls are perpendicular to it, and that sidewalks are thinner

(more compact) than roads.
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" 3. Related Research

» A large corpus of research on aerial image understanding per se exists, [akey84|,
[harlow84], [Hwang83], [nagao79], [sloan81}, [quam78]|, [faugeras8l], [Glicksman83),

» [reynolds34], [potmesil83], and many gener2l vision techniques are applicable to the

o~ aerial domain. Large aerial projects have been undertaken at USC [nevatia83] and at

N SRI [Fischler83|.
R
The 3D MOSAIC project [Herman83] is geared toward the urban aerial domain.

E:. Important differences in their strategy are that junctions are primitive, and a monocular
: ' analysis is performed. At the level of object representation LandScan treats surfaces as
: primitive, while 3D Mosaic treats faces, edges and points as primitives. The LandZcan
! representation of objects by their surface primitives was chosen because it is compact,
SE easy to analyze, and a representation sufficient for matching. Further, in 3D MOSAIC
.’:; } hypotheses are generated about the continuation of occluded lines, shapes of faces, and
'::: the extent of vertical faces. The construction of the scene model in the 3D MOSIAC
oy system is exclusively data-driven, while LandScan uses a query-driven approach for
* constructing the Scene Model.

.

.

'_", ATN’s have been used primarily in the domain of natural language [BatesS1],
3 [winograd83|, [winston?7]. A notable exception to the use of ATN grammars for natural
z, language understanding is the system designed by Tropf and Walter [tropf83] which uses
: an ATN model for the recognition of 3D objects with known geometries. The
" recognition process performed by their system is one of ®analysis-by-synthesis® in which
b hypothetical model instantiations about an object (prototypes) are generated and then
t. verified by the ATN. These prototypes are then verified by comparing them to the
X actual 3D data using the ATN. If the similarity between the prototype and the image
_‘;E exceed some threshold then the prototype is considered to be a model instantiation of the
2
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actual data. Otherwise, anotiier prototype is generated and matched against the data.

Shapiro and Haralick [Shapiro84] describe a hierarchical, relational 3D model
which is influential in our design. Their model provides precise, accurate information to
be used by low-level vision and inspection processes as well as information required by
high-level vision and reasoning processes. All of the information is represented by using
*spatial data structures®, each consisting of a recursive set of relations. The hierarchy

consists of four levels: world, object, part, and surface/arc.

Rosenthal [Rosenthal81] proposed a model and interpreter for analyzing aerial
images of urban settings. In some ways, Rosenthal’'s work was the impetus for this
system. He proposed a purely hierarchical model of the world which is ordered by the
ON relations and a goal driven production system to ‘control recognition. It has a
database which contains descriptions of objects and regions. He introduced an Object
Description Notation to describe objects in the scene. This notation contains

information about both the actual and possible properties.

The work of Talmy and Herskovits [Talmy83] [Herskovits82] [Herskovits84] has
influenced the design of both the topological relations in the models and the choice of
linguistic attributes which must be associated with objects in order to insure a robust
and reliable natural language interface. It is from their work that the need for a single
meaning for a single relation was discovered. Herskovits methodically discusses the
knowledge we as natural language users have about the objects which we use in spatial

constructions every day.
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' 4. data-driven System Implementation and Results

This section will describe the implementation and performance of the major
modules Figure Fl: image acquisition, image enhancement, edge detection, stereo
matching, mapping disparity to depth, interpolation of sparse depth points, edge segment

fitting, construction of surface graph, surface attributes and topological relations

¢

2 between surfaces.
| We show results derived from imaging a scale model. We hkave also tested the
- modules on real, highly complex aerial images.

. 4.1. Image Acquisition
3 Presently images are acquired manually by positioning cameras above a scale
model of some toy buildings. Figure F2 illustrates a typical stereo pair of images
:,.' acquired. A system for automatically setting camera parameters (location, pan, tilt,
¥ focus, zoom, aperture, vergence angle) has beenr constructed, and a controller for
b optimizing the parameters on the basis of feedback from high-level goals, medium-level
R strategies, and low-level image features is under design.
f This ®*smart camera® is an active sensor, capable of moving in or out for a better
'E look, zooming in on a feature, improving its signal/noise ratio,.and ®craning its neck®
for a better vantage. Our philosophy is to have the sensors do as much of their own
3 processing as possible in a heterarchical environment, and not to devote all our resources
:'E to exhaustive analysis of a static scene.
! 4.2. Image Enhancement
: Before extracting the features for matching the images are smoothed with a non-

' linear double window median filter [Lee85], removing impulse poise, and suppressing
2 high-frequency noise. Independently, the range of grey scales is extended to cover 256

’
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values by linear contrast enhancement.

4.3. Edge Detection
3 Two edge operators have been implemented, the Canny [Canny84], [Tzlton84] and
DOG zero-crossing [marr80] methods. As implemented, these operators return ®edgels,®
defined as points possibly lying at an intensity discontinuity, rather thaa Sedges,*

defined as a set of edgels lying along a space curve. The two operators are now being

Tolob o oin e

carefully evaluated and compared on the basis of false positives, false negatives, and

overall robustness under focus degradation and illumination degradation. Although the

verdict is not yet in, the Canny operator is presently employed, and typical results are

shown in Figure F3.

The Canny operator approximates a directional first derivative. The direction
information can be used to find areas of high curvature (e.g., corners). Our present
)

) approach is to look at the variance of the directions in a small edgel neighborhood to

identify corners and junctions.

-

4.4. Stereo Matching
Because of the large interocular distance in the aerial (fly-by) imaging there are
¥ large disparity jumps and large portions of the scene are visible in one image but not the

other. This occlusion problem has haunted many matchers.

The matcher [Smitley84] employs the method of 2-sided correlation in ‘order to

circumvent some of the difficult problems of occlusion, and uses a registration technique

: to bring the scan lines into correspondence [Izaguirre84]. Figure F4 illustrates the results
E from the matcher. Present work in matching concerns evaluating its robustness,

extension to higher-order features (e.g., linear segments, corners, and junctions), and

! obtaining horizontal disparities as well by taking three views per stereo frame instead of




AU \ * v LT I LPY LT T J ap IR FUUAA RN A “ata et * 8,°8% ftx 4% 1% 1. gls %, a0, pte glg AY
.| [OOSR 0 0 tag ? (AR (AR IR IR 3 () ¢, b

;

v two,

-C: 4.5. From Disparity to Depth

L

ko Generally both disparity (distance in image space between matciing pixels) and
1]

depth (distance in 3-space from viewer to object) are measured in a viewer-centered

B -
-

coordinate system. The function from disparity to depth (absolute, not relative) is linear
N in the disparity, interocular distance, focal length, and vergence angle. In the case where

the view vector is parallel to the ground, a large disparity implies that the object is close,

LR

b i.e., has a small depth value. In the case where the view vector is perpendicular to the
., ground (i.e., in the aerial domain) a large disparity implies that the object is close, i.e.. is
far from the ground. We adopt the convention of mapping large disparities into large
’ depths.
-'::
The method is essentially triangulation. We are building hardware to both control
. and measure the vergence angle between two cameras. With this angle, the exact
2 distance to any point fixated in both visual fields can be discovered. Given this exact
. distance, the relative depth map returned from stereo can now be fixed as an absolute
'.; / depth map.
* 4.6. Depth Point Interpolation—Filling In The Gaps
e Presently two types of interpolation are implemented. The first attempts to
E restore edgels which should have been matched, but were not matched, by co’mparing
,',j ‘ the depth map with a map of edgels with a largely vertical (hence matchable) component
" in its directional derivative. The depth map is updated by adding selected edgels with a
g linearly interpolated depth value. This is an important process, and the results of linear
. intepolation are not enmtirely satisfactory. Improved interpolation will use corners and
I junctions in the near future.
x
s
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The second interpolation fills depth values in featureless areas. This is quite
simple-minded [grimson81] and does not provide exceptional results. But because this is
used primarily for display purposes, i.e., we do not want to hypothesize about featureless

areas, this is not a significant problem.

4.7. Edge Segment Fitting—-Generating Wire Frames

This process fits a set of (straight) line segments in 2-point form (wire frames) from
a rich set of depth points by a divide-and-conquer method of recursive decomposition.
This method assumes that the boundary is of low curvature, and needs iniormation
about the location of cornmers to operate correctly. Figure F5 illustrates the edgze

segments generated from an interpolated depth map, and corners specified interactively.

4.3. Surface Model

A graph is constructed to serve as the surface model. This process converts a set
of contours into a set of closed contours represented as a graph (a linked list of vertices,
edges, and faces). The construction algorithm looks for minimum distance paths from a
vertex back to itself, by traversing edges and at trihedral junctions choosing the path
making the most acute angle with respect to the present path. Figure F6 illustrates the

faces represented in the surface model.

Surface attributes and relations are computed in the SurfsUP
[Radack84| geometrical modeling system. In it, a face is defined by its enclosing 3D
contours. Attribute values for each face in the surface graph are computed [Kr;)tkov84]:
compactness, centroid vector, (outward-pointing) normal vector, area, *type,* (building,
sidewalk, field, street, and unknown), and number of sides. These values are computed

once and stored on aa attribute list.

Computed topological relations are above, adjacent (touching), contiquous (sharing




an edge), contains (proper inclusion), looksadjacent, looksconiiguous (respectively
adjacent and coatiguous under perspective transformations) [Krotkov84]. Relations (and
indirectly their complements) are computed once and stored as Boolean arrays. These
relations are expensive to compute because they require intersection operations (except

the above relation).

5. query-driven System Implementation and Results

This section describes the design and implementation of the query-driven processes.

These include object recognition, scene modelling, high level reasoning processes, and

query handling.

5.1. Object Recognition

The Avgmented Transition Network (ATN) formalism has been chosen as the
paradigm for object recognition in LandScan. It is composed of three parts: the
grammar, a dictionary, and an interpreter. The grammar represents the a priori or
world knowledge that the system must have in order to recognize objects and assign
*cultural® labels to subsets of the scene. The dictionary is simply a list of all of the
faces which have been segmented by the low and middle level routines. It represents the
actual data which will be used in the recogmition process. The third component of the
recognizer is the Lisp program which provides the control structure for the process. An
object is recognized by traversing a network successfully. Figure F7 shows the resuits of

running the recognizer on the image in Figure F6.

The ATN formalism was chosen to perform object recognition for several reasons.
First, the grammar enables the global knowledge about object appearances to be encoded
as a generative model (grammar) for objects of indefinite appearances. Another reason is
that the ATN operates using a top-down control structure - enabling the object

recognition to be a query-driven process. Finally, the fact that the global knowledge
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(grammar) and the control structure are scparate makes addiag more global knowledge

or changing the control strategy trivial.

j The grammar as written is a two level network (this is considerably simpler than
most ATN's which bandle natural language utterances.) The botiom level concerns itself
K with the recognition of ®simple objects.® An object is simple if its further decomposition
; into parts will result in no eatity which is in the domain of objects. For example,
decomposing a building with a pitched rool will result in two halves of a pitched roof.
3 Neither of these entities are considered objects in the domain - they are parts of objects.
5 This level consists of the networks SIMPBUILD, SIMPSTREET, SIMPFIELD, and
‘ SIMPSIDEWALK. The top level combines the simple objects which were recognized in the
first level of the network into "complex objects®. A complex object is decomposable in a

noatrivial way into at least one simple object.

) A network is a set of podes and arcs. The nodes represent how far the system has
progressed in the object recognition. The arcs represent the patterns (object primitives
) of simple objects) which must be matched in order to proceed further in the recognition

of that particular object. Each network is represented by a set of grammar rules.

The states are named with the convention of two part names [bates81]. The first
part of the name indicates the name of the network and the second part describes either

how far along this state is in the recognition process or the subtype of the object being

] recognized.

The arcs are represented by lists of the form (TYPE HEAD TEST ACTION). TYPE

indicates the category or type of are. The arc types in LandScan are:

o PUSH - call to a *simple® network

) o CAT - search the dictionary (surface model) for an appropreate face

. ~ N R . ey - e AT e S L
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Py e POP - return to a calling network or add an object to the scene model and
return that an object has been found

e JUMP - go to the next state without searching for a primitive object or face

)
,': HEAD is dependent upon the type of arc it is. HEAD can be a syntactic category - words
»“
"' . . . .
- or lists of words, a constituent type, the next state, or the form in which the data
EY *parsed® is to be returned. TEST is a list (pcssibly empty) of tests to be performed
b~
: before the arc can be traversed. The tests on the arcs encode the relations which must
)
' hold betweeen the components of an object and also provide further checking of the
N fcatures of a component. ACTION is a list of actions to be performed as the arc is
2 traversed. The possible egister setting 2nd structure building actions are:
5 o (SETR REG VALUE) - sets the register REG to the evaluation of VALUE
% o (SETRQ REG STRING) - sets the register REG to the literal STRING
< e (ADDR REG VALUE) - appends the evaluation of VALUE to the end of the list in
. REG
- o (BUILDQ <OBJECT>) - builds an object instance
o~
Y
QD There are two registers associated with the system - a SUBTYPE register and an
.
= OBJECT register. The SUBTYPE register contains the current subtype of the object being
" recognized. It is a feature register whose value is a string indicating the subtype name of
3
N an object. The OBJECT register is a role register containing a list of all the faces which
- comprise the object. As laces are found which match the generative sequence described
.3 by the grammar, they are added to the OBJECT register.
2
n
i The dictionary in the recognizer is the Surface Model (described above) which
A represents both the geometric and topological information about the surface primitives in
LY,
: - the scene [krotkov84).
|
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5.2. The Scene Model

In order to perform any scene analysis in a reasonable way the scene has to be
represented in some fashion which will enable the operations necessary for scene analysis
to be performed. These actions include determining the relations, both complex and
simple, among objects; and locating and identifying specific objects and object parts. A
dynamic scene model has been designed which is composed of two components: a list of
objects currently known to be in the sceme and a sct of matrices representing the
primitive relations which bave been found necessary and sufficient for performing further
scene analysis. The scene model is dynamic because information can be added to it as

further image analysis occurs.

The first comnonent of the scene model is the object list. The objects on this list
are those objects which have been recognized during previous scene analysis operations.
These objects are represented only by polyhedral surfaces. Each instance of an object in
the scene has the information associated with it which was determined necessary to
facilitate further scene analysis. The components of an object record are a name, the list
of faces (polyhedral surfaces) comprising the object, its location in Euclidean three space
(average of the centroids of all the faces comprising the object), and a subtype which

gives more specific information about the expectations one can have about the object.

The relations in the scene model represent the primitive relations or topological
properties between objects in the scene. The six relations adequate to represent all
relations, both simple and complex, among objects using various forms of relational
composition are ADJACENT, CONTIGUOUS, LOOKSADJACENT,
LOOKSCONTIGUOUS, ABOVE, and CONTAINS. They are defined over the set of all
objects currently recognized in the scene. These relations are defined similarly to their

counterparts in the Surface Model. The relations are represented by their adjacency




matrices because the adjacency matrix is easily updated and males composition of

" relations simple. The composition becomes a simple matter of boolean matrix

multiplication for which there are many fast and elficient algorithms.

Keeping a list of objects known to be in the scene allows the addition of further

;': information to the scene model to be a trivial task. The object list component of the
:. . scene model is the set over which the primitive spatial (topological) relations is defined.
:y. Therefore adding the new tuples to the relations will only involve calculating the
E_ relations between the new entities and the new set over which the relations are defined.
::-j Thus the choice of dynamic model is feasible and will allow for a top-down scene
> analysis.
:.:
\ 5.3. Linguistic Analyzer
: Given a query, the Linguistic Analyzer will symbolically represeat this utterance so
" that it can be used by the reasoning process to analyze the image. The Linguistic
\ Analyzer will parse the query, determine the query type, and categorize all implicit
: subqueries in the actual utterance. The output from the analyzer will contain a list of
: the objects to be found, the relations which must hold between these objects, and the
3.':' query type (so that an appropriate response can be generated). As an example of this
N query analysis, suppose the user were to ask the question, °Is there a car on the street?®
2 The output from this query would be the objects to be recognized, car and street; the
v relation ON defined be multiplying the CONTAINS relation by the transpose of the
ABOVE adjacency matrix; and an indication that this query is responded to by a yes/no
, answer with some explanation. In this phase, the analyzer may discover that the query
E, fails to have an answer because the query is syntactically incorrect (the grammar is
‘ wrong or the vocabulary is unknown). In order for the analyzer to be robust, it must
é then indicate to the user that LandScan is unable to answer the question because the
query is ill-formed.
¥
A
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In order to produce output in some form useful to the reasoning processes it will be
necessary for this module to have certain knowledge available. This includes the
grammar of the language (English queries), the vocabulary necessary for this domain,
and the semantics of locative constructs in order to produce a symbolic representation of

the question.

5.4. Reasoning
The final component of LandScan is the reasoner which performs all bigh-level
scene understanding operations. The reasoning operations are divided into three major

categories (which are not nearly as simple as they appear):

1. find an object in the scene model
2. ﬁna an object part

3. find the spatial relations among objects

It is in the reasoner that all the parts of the system are tied together. In order to
oBtain the information necessary for the generation of the respoase the reaoner must
have available to it both global knowledge and runtime dat:.l..' The global knowledge
includes the World Model and the Object Model (described below). The runtime data
includes the sensory information available from the vision system in the form of the

Scene Model (described above) and a symbolic representation of the query.

If the reasoning processes fail to produce a positive response (the query fails to
have an answer), the reasoner performs two types of query failure analysis. The first

type of query failure involves a query violating the global knowledge embodied in the

World or Object Model. In this case, the system will respond with a message indicating
that the query is conceptually ill-formed in this domain and why it is ill-formed. For
instance, if the query asked how many walls the street had, the system would respond

that streets do not have walls and that for that reason, the query is ill-formed. The
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other type of failure involves not finding the informaticn requested in the scene model.
. In this case, rather than simply responding that the system was unable to find the data
4 in question, it would prompt the vision system to move the cameras and combine this
X new view of the scene with the old one in order to obtain a positive response to the
query.
5.4.1. World Model

Like the hierarchical relational model of Shapiro and Haralick, the world model

> describes the features and relations of the objects in the domain. The objects are those

v which can be expected in an urban scene - buildings, streets, sidev-alks, etc. The world

X is represented by a labelled directed muitigraph in which the ncdes are the objects in the

domain and the arcs are labelled with the relation which can hold between the two

objects in the world. It has been determined that at least two relations are needed to

adequately model the world. The two relationships are NEXT _TO and ON. NEXT_TO

'; implies that two objects can be expected to be adjacent in the domain. This adjacency

é does not necessarily mean that the two objects will be adjacent in the geometric sense -
sharing a common boundary - but that they would be viewed as beicg "close enough® to

’ be considered adjacent. For example, CAR NEXT_TO BUILDING could be said to hold

:” even if the car and building are scparated by some other small object such as a

4 sidewalk. The ON relation has one interpretation "on top of®.

: ; 5.4.2. Object Model

Kn The object model represents the expected physical features and linguistic p-roperties

‘ of the objects in the domain. The physical properties are the parts of objects. These

: *parts® are the objects which were not included in the world model in order to keep the

'u‘ level of abstraction in that model consistent. In the object model, objects are

: decomposed into their possible parts.

¢

3 The linguistic properties are those features which affect the usage and

2
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interpretation of a spatial construct (phrases describing the spatial relations between
objects). Since the domain is a visual one, each object in the domain will have a ®place®
associated with it. This is what Herskovits calls the canonical geometric description of a
spatial entity (objects) [Herskovits82].Ordinary solid objects {buildings, vehicles, people)
are bounded closed surfaces. Geographical objects are entities with slightly imprecise
boundaries - roads, rivers, and fields. Some other properties which must be represented
are a prototype shape and the allowable deviations from it, the relative size, and
characteristic orientation - ie. a table stands on its legs normally. The typical geometric
conceptualization will also affect the choice cf spatial construct - is the object normally
viewed as a point or line. Along with the typical geometric conceptualization is the
typical physical context of an object. For instance, a door is normzlly viewed as being in
a wall. The normal function of an object, its functionally salient parts and the actions

commonly performed with an object will also be necessary for analyzing the spatial

constructs.

8. Future Work

In the data-driv;n system, much work still needs to be done in interpolating the
depth map, edge fitting, and finding closed comtours. In particular, it proves to be
difficult to extract closed contours from the igterpolated depth map (Section 4.8). Our
future work will look hard at the feedback available from the failure to close contours
and how it may be applied to the camera controller to take images to help close the
contours. Other work concerns the implementation of algorithms for camera p;rameter

control, corner detection, and measurement of focus sharpness.

In the query-driven system, the recognizer and scene model will provide the image
information necessary to perform scene analysis of urban environments. The reasoning

operations and linguistic analyzer must be fully specified and implemented. In
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particular, we will be paying special attention to the encoding of spatial prepositions and

providing a computational model for handling query failure.

Before the scene model can be used in the query-driven image analysis process, the
global knowledge embodied in the world and cbject models must be encoded. The world
model will be represented graphically as explained above. The object model presents
more of a challange though. The PART_OF relation has been handled in many systems
[rosenthal81], [shapiro84]. However, no one has yet proposed a means of encoding the
linguistic data which must be known about the objects in order to use them correctly in
natural language utterances. Herskovits [herskovits82] suggests that certain object

knowledge is relevant to the task of encoding and decoding locative constructions.

The natural language interface which uses the scene representation still has to be
designed. It must be able to apply locative linguistic constructs to some representation
of visual data and reason about this data. When this is operative, the scene analysis will

be truly query-driven and the goals of the sysiem will have been reached.

7. Conclusions
This paper has presented LandScan, a prototype vision system under development.

This system covers most of the different levels of vision and natural language processing.

In summary, the data-driven subsystem of LandScan automatically acquires stereo
images, enhances them by both linear and non-linear filtering, extracts edgels.'matches
edgels to generate a depth map, interpolates the depth map, fits edgels to depth points,
uses the edges to build a surface grph, including geometric and topological attributes.
The query-driven modules recognize objects and build a scene model which represents

the user's interest in the image. It is controlled by the reasoner and linguistic analyzer

which provide a computational model for handling spatial constructs and query failure.
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While LandScan is not complete in the sense that all of it is successfully
implemented, it provides a computational model for a vision system guided by natural

language.
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Figure 1: PBlock diagram of LandScan.
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Abstract

This paper presents LandScan (LANguage Driven SCene ANalysis) as an integrated
vision system which covers many levels of both vision and natural language processing.
Computations are both data-driven and query-driven, but only the data-driven system is
considered here.
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The data-driven system employs active control of stereo cameras for image acquisition,
and a bottom-up flow of control dynamically constructs a surface model from multiple
aerial views of an urban scene. Processing steps include: image acquisition, image
enhancement, edge detection, stereo matching, mapping disparity to depth, interpolation
of sparse depth points, edge segment fitting, construction of surface model, including
surface attributes and topological relations between surfaces.

LandScan:
A Computer Vision System for Analysing Aerial Images

1. Introduction

The aim of our research is to develop a svstem capable of dynamically updating
and maintaining a model of an urban world over multiple aerial views. The system will
have a natural language front end [Zwarico 84], through which users can query the
system about what it sees, and to direct or interactively 2ssist the vision processing by
restricting the analysis to those areas of the scene which zre of current interest. The
representation is dynamic, constructed as the system is queried, and explicitly represents

the history of the user’s interest in the scene.

A unique contribution of the work is that processing is both data-drivenn (*bottom
up,* determined by sensor data) and query-driven (*top down,® determined by user
queries). The integration of both methods into one system can help overcome the
sh.ortcomings of each method employed independently. ['or example, if data-driven
processing were able to segment a graph of edges derived from the image into several
different connected components, query-driven information about what the system should
be looking for can help impose structure, and a unique segmentation, upon the otherwise

ambiguous data.
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The data-driven processing starts with stereo aerial images and proceeds, by Al
filtering, matching, interpolating, and fitting, to reconstruct the surfaces in the scene.
The aerial domain buys the simplicity of planar surfaces. Two factors distinguish this
data-driven system from many others. First, image acquisition is controlled by feedback
from the query-driven system, and is undertaken by active sensors, actively probing the
envirooment. Second, the controlled environment of a scale urban model allows precise

verification of results and proper operation of individual modules.

This paper will describe the aerial domain, some related research, the
implementation of the data-driven portion of the LandScan (LANguage Driven SCene

ANalysis) system, and our plaas for future work.

2. The Aerial Domain
Aerial images suffer from a poverty of context, due to the distance at which images

are formed. Urban scenes contain featureless areas and large numbers of occlusion edges.

Even with the best possible use of image data, we generally can do no better than to o

compute a sparse depth map of the imaged scene. For many purposes a sparse depth

map is inadequate, and the missing surface information must be obtained from other )

sources: other ®shape from ...* processes, domain-depeadent high-level knowledge, and .

real-world constraints.

AR P

There are two major constraints in the aerial domain:

P

1. The data is obtained by taking aerial photographs of an urban environment. )
Urban scenes are characterized by an abundance of straight lines. This \
means that to a very good approximation the scene, as viewed from on high,
is composed of planar polyhedra, so that detected edges separate planar 5
surfaces, i.e., each edge arises because it is the intersection of 2 planar faces. .

2. The image acquisition process is under our control, so the camera model is
known. Some combination of azimuth and elevation angles, Euler angles,
pan, roll, tilt angles are available and fully specify a 4x4 homogeneous -
transformation relating the position and orientation of the two cameras.
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Domain knowledge includes such facts as roofs of buildings tend to be parallel to
the ground plane, while walls are perpendicular to it, and that sidewalks are thinner

(more compact) than roads.

3. Related Research

A large corpus of research on aerial image understanding per se exists, [Akey 84],
[Harlow 84|, (Hwang 83|, [Nagao 79, [Sloan 81], [Quam 78|, [F auéera.s 81], and many
general vision techniques are applicable to the aerial domain. Large aerial projects have

been undertaken at USC [Nevatia 83| and at SRI [Fischler 82].

The 3D MOSAIC project [Herman 83] is geared toward the urban aerial domain.
Important differences in their strategy are that junctions are primitive, and a monocular
analysis is performed. At the level of object representation LandScan treats surfaces as
primitive, while 3D Mosaic treats faces, edges and points as primitives. Further, in 3D
MOSAIC hypotheses are generated about the continuation of occluded lines, shapes of
faces, and the extent of vertical faces. The construction of the scene model in the 3D
MOSIAC system is exclusively data-driven, while LandScan uses a query-driven approach

for constructing the Scene Model.

Shapiro and Haralick [Shapiro 84] describe a hierarchical, relationa! 3D model
which is influential in our design. Their model provides precise, accurate information to
be used by low-level vision and inspection processes as well as information required by
high-level vision and reasoning processes. All of the information is represented by using
*spatial data structures®, each consisting of a recursive set of relations. The hierarchy

consists of four levels: world, object, part, and surface/arc.
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4. System Implementation and Results

This section will describe the implementation and performance of the major data-
driven modules, illustrated in Figure 81: image acquisition, image enhancement, edge
detection, stereo matching, mapping disparity to depth, interpolation of sparse depth

points, edge segment fitting, construction of surface model, including surface attributes

and topological relations between surfaces.

4.1. Image Acquisition
Presently images are acquired manually by positioning cameras above a scale
model of some toy buildings. Figure 82 illustrates a typical stereo pair of images
acquired. A system for automatically setting camera pa.ra.n:etérs (location, pan, tilt,
focus, zoom, aperture, vergence angle) has been constructed, and a controller for
optimizing the parameters on the basis of feedback from high-level goals, medium-level

strategies, and low-level image features is under design. This ®smart camera® is an

04
L active sensor, capable of moving in or out for a better look, zooming in on a feature,
¥ improving its signal/noise ratio, and much more. Our philosophy is to have the sensors
: do as much of their own processing as possible in a heterarchical environment.
4.2. Image Enhancement

Before extracting the features for matching the images areé smoothed with a non-
N linear double window median filter [Lee 85|, removing impulse noise, and suppressing
.\ high-frequency noise. Independently, the range of grey scales is extended to cover 256
_ values by linear contrast enhancement (see Figures 8-3 and 8-4 ).
7
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4.3. Edge Detection

Two edge operators have been implemented, the Canny (Canny 84|, [Talton
84] and DOG zero-crossing [Marr 80| methods. As implemented, these operators return
*edgels,® defined as points possibly lying at an intensity discontinuity, rather than
'édges,' defined as a set of edgels lying along a space curve. The two operators are now
being carefully evaluated and compare& on the basis of false positives, false negatives,
and overall robustness under focus degradation and illumination degradation. Although
the verdict is not yet in, the Canny operator is presently employed, and typical results

are shown in Figure 8-5.

The Canny operator approximates a directional first derivative. The direction
information can be used to find areas of high curvature (e.g., corners). Our present
approach is to look at the variance of the directions in a small edgel neighborhood to

identify corners and junctions.

4.4. Stereo Matehing
Because of the large interocular distance in the aerial (fly-by) imaging there are
large disparity jumps and large portions of the scene are visible in one image but not the

other. This occlusion problem has haunted many matchers.

The matcher [Smitley 84| employs the method of 2-sided correlation in order to
circumvent some of the difficult problems of occlusion, and uses a registration technique
to bring the scan lines into correspondence [zaguirre 84|. Figure 8-8 illustrates the
results from the matcher. Present work in matching concerns evaluating its robustness,
extension to higher-order features (e.g., linear segments, corners, and junctions), and

obtaining horizontal disparities as well by taking three views per stereo frame instead of

two. 4




4.5. From Disparity to Depth
: Generally both disparity (distance in image space between matching pixels) and
depth (distance in 3-space from viewer to object) are measured in a viewer-centered
N coordinate system. The function from disparity to depth (absolute, not relative) is linear
- in the disparity, interocular distance, focal length, and vergence angle. In the case where
: the view vector is parallel to the ground, a large disparity implies that the object is close,
i.e., has a small depth value. In the case where the view vector is perpendicular to the
g ground (i.e., in the aerial domain) a large disparity implies that the object is close, i.e., is
far from the ground. We adopt the convention of mapping large disparities into large

.: depths.

The method is essentially triangulation. We are building hardware to both control

PP EIEL

and measure the vergence angle between two cameras. With this angle, the exact
distance to any point fixated in both visual fields can be discovered. Given this exact
distance, the relative depth map returned from stereo can now be fixed as an absolute

depth map.

4.6. Depth Point Interpolation—~Filling In The Gaps

The research issue for any scheme of filling the gaps is the trade-off between the
measurements and the & priori information. We elaborate this trade-off with an
example. Let us suppose that we have a sparse array of 3D points after a stereo and/or
optical flow computation. Remember we are left with some points that have mot been
matched either in the stereo matching nor in optical flow computation. In order to {ill in

the gaps we have several possibilities:

a) we can ignore the unmatched points, i.e., have confidence only in those points
(measurements) that have been matched. Then assume, let us say a linear (or any

polynomial) model (the a priort information about the local surface). Based on this we
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perform linear (or polynomial) interpolation between the neighboring points.

b) an alternative to the case (a) is instead of assuming the linear or polynomial
model, which are inherently local, neighborhood models, assume a global smoothness
constraint, which using variational calculus tries to fit the smallest and smoothest surface

over the sparse data [Grimson 81].

¢) the third possibility is to assume a local smoothness constraint in the depth
values. Then reexamine the unmatched points (match them with the closest edgels in the
other image) and check whether their depth value would satisfy the smoothness

constraint with the neighboring points.

d) Finally if, for example, from the outline we can identify measured object then
clearly the *fill in gaps® process can use this information. Example of this case can be

sidewalks or roads in aerial views.

As usual in machine perception, there is no one technique that works uniformly
well in all cases. We believe that this is an integral part of the surface interpretation.
One clearly needs all the above techniques available and then having a rule-based system
use whichever give the ®*best® results. For exa.mple if we have one obejct in the view,

then perhaps the third method is the ®best®. If one has reason to assume that one deals

with objects that have only planar surfaces, then the first method might be adequate.
The third method is the most versatile since it uses the most measurements and t:he least

a priori information. The cost is in computation.

Presently two types of interpolation are implemented. The first attempts to
restore edgels which should have been matched, but were not matched, by comparing

the depth map with a map of edgels with a largely vertical (hence matchable) component

in its directional derivative. The depth map is updated by adding selected edgels with a

XA



Tl a0 a8 Vab V2l Yal taf Cak 420 % Vi Fo8 0.9 LA vop' Bt B S .8 0.0 8.0 5.8 9.8 1.0 ¢ Had a8 taf b Wag Yo Sa8 a8 *al iall Y2l Yo Yot 208 o Sad at $.4 $o9 ol Sad Vop Nal Pod ¢ )

linearly interpolated depth value (Figure 8-7). This is an important process, and the

A results of linear intepolation are not entirely satisfactory. Improved interpolation will
: use corners and junctions in the near future.
- The second interpolation fills depth values in featureless areas. This is quite
S simple-minded [Grimson 81] and does not provide exceptional results (see Figure 8-8).
: But because this is used primarily for display purposes, i.e., we do not need to
% hypothesize about featureless areas because of the aerial perspective on an urban world,
- this is not a significant problem.
: 4.7. Edge Segment Fitting—Generating Wire Frames
3 This process fits a set of (straight) line segments in 2-point form (wire frames) from
2 a rich set of depth points by a divide-and-conquer method of recursive decomposition.
This method assumes that the boundary is of low curvature, and needs information
about the location of cormers to operate correctly. Figure 8-9 illustrates the edge
x segments generated from an interpolated depth map, and corners specified interactively.
" 4.8. Surface Model
A graph is constructed to serve as the surface model. This process converts a set
: of contours into a set of closed contours represented as a graph _(a linked list of vertices,
L edges, and faces, as in Figure 8-10). The construction algorithm looks for minimum
E distance paths from a vertex back to itself, by traversing edges and at trihedral junctions
5 choosing the path making the most acute angle with respect to the present path.. Figures
N 8-11 and 8-12 illustrate the faces represented in the surface model.
. Surface attributes and relations are computed in the SursUP [Radack, et al
3 84] geometrical modeling system. In it, a face is defined by its enclosing 3D contours.
; Attribute values for each face in the surface graph are computed [Krotkov 84]:
]
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o compactness, centroid vector, (outward-pointing) normal vector, area, *type,® (building,
§ sidewalk, field, street, and unknown), and number of sides. These values are computed
N, once and stored on an attribute list.

e

.

" . Computed topological relations are above, adjacent (touching), contiquous (sharing

an edge), contains (proper inclusion), looksadjacent, lookscontiguous (respectively
L adjacent and contiguous under perspective tramsformations) [Krotkov 84]. Relations
. (and indirectly their complements) are computed once and stored as Boolean arrays.

Y These relations are expensive to compute because they require intersection operations

N (except the above relation).

5. Future Work

In the data-driven system, much work still needs to be done in interpolating the
depth map, edge fitting, and finding closed contours. In particular, it proves to be
difficult to extract closed contours from the interpolated depth map (Section 4.8). Our
future work will look hard at the fcedback available from the failure to close contours
and how it may be applied to the camera controller to take images to help close the
contours. Other work concerns the implementation of algorithms for camera parameter
control, corner detection, measurement of focus sharpness, and using feedback from
failure to recognize an object to guide future processing.

L 6. Conclusions ]
This paper has presented LandScan, an integrated vision system uader
A development. This system covers most of the different levels of vision and natural

- language processing, integrating sensor information with surface, scene and world

) models.

In summary, the data-driven subsystem of LandScan automatically acquires stereo
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9
images, enhances them by both linear and non-linear filtering, extracts edgels, matches
edgels to generate a depth map, interpolates the depth map, fits edgels to depth points,
uses the edges to build a surface graph, including geometric and topological attributes.
While LandScan is not complete in the sense that all of it is successfully
implemented, the system covers a wide spectrum of vision and natural language
processing.
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Figure 8-1: Block diagram of data-driven section of LandScaa system.
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Figure 8-2: Sterco pair of aerial images, left :nd right, of scale urban mudel.
Objects prescat include 3 buildings, 2 sidewalks, 1 tree, 1 field, and 2
roads.
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Figure 8-3: Histograms cf left image intensitics, before and aster enhaccement.
The enhancement has caused some aliacing, but has improved the contrast
by a factor of 1.5. Right image histograms are very similar.
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Figure 8-4: Enhanced images, lct and right.
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Figure 8-5: Results of Canay edge detector, left and right *cdgal® maps.
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A Figurc 8-8: Edgels matched using 2-sided correlation.
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Figure 8-7: Depth map with dept values linearly interpolated. This binary
picture depicts caly the location of non-zero depths. Picture generated
directly from disparities and original images.
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Figure 8-8: Depth map with depth values linearly interpolated inside of
featureless areas. Picture generated directly from disparities
and edgels. The long trouths are roads 2nd sidewalks. The spikes ote
buildings.
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Figure 8-9: FEdge scgments generated from an isterpolated denth map. TLis picture
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h Figura 8-10: Surface graph data structure.
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Figure 8-11: Reconstructed planar surfaces, rendered by Movie.BYU in top
view.
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